UNIVERSITAT POLITECNICA 4
DE CATALUNYA F I B \?@ tlecos ’)
BARCELONATECH 5

DEEP LEARNING FOR WIRELESS
COMMUNICATIONS

MIQUEL SIRERA PERELLO

Thesis supervisor: KAUSHIK CHOWDHURY (Northeastern University)
Tutor: ALBERTO CABELLOS APARICIO (Department of Computer Architecture)

Degree: Bachelor's Degree in Data Science and Engineering

Thesis report
Facultat d'Informatica de Barcelona (FIB)
Escola Técnica Superior d'Enginyeria de Telecomunicaci6é de Barcelona (ETSETB)
Facultat de Matematiques i Estadistica (FME)

Universitat Politécnica de Catalunya (UPC) - BarcelonaTech

| am deeply grateful to my two supervisors, Kaushik Chowdhury and Albert Cabellos-Aparicio, for
their invaluable insights, support, and guidance throughout this research. | would also like to express my
gratitude to Stratis loannidis for sharing his expertise in machine learning, which has greatly contributed
to the development of this work.

| extend my appreciation to all my lab coworkers for their collaboration, engaging discussions, and
assistance during this project. | am particularly thankful to Mauro Belgiovine and Joshua Groen, with
whom | have closely collaborated. Their guidance and willingness to help, even amidst competing priorities,
have been truly valuable. They serve as exceptional role models for researchers.

| am immensely thankful to the friends and individuals | have had the privilege to meet during my time
in Boston. They have made of my stay in this city an unforgettable experience. | would like to express my
special gratitude to my two roommates and O.G.P. for creating a sense of belonging and making me feel
at home in a foreign country.

| would also like to thank and acknowledge the friends and teachers who have been a part of my
educational journey during my bachelor's degree. Their guidance, encouragement, and knowledge have
played a paramount role in my growth both as a person and as a professional.

Last but certainly not least, | am deeply thankful to my family for their immense support, love, and
belief in my abilities. Their constant encouragement and understanding have always given me the strength
to keep working towards my future.

| am truly grateful to all the individuals mentioned above and the countless others who have contributed
to my growth and success.

Abstract

CATALA:

Aquest treball avalua el rendiment de diversos models d'aprenentatge profund per a la classificacié
d’ones en diversos entorns de canal i condicions de soroll. Els nostres resultats demostren la superioritat de
les arquitectures basades en Transformer sobre enfocaments establerts com les CNNs en una gran varietat
de configuracions. Aquests models han sigut entrenats amb dades sintétiques i augmentats en diversos
escenaris per aconseguir una generalitzacié robusta. Analitzem ampliament I'impacte de condicions de canal
desafiants i del soroll en les transmissions sense fil i en la prediccié. La comparacié entre arquitectures mostra
els seus avantatges, desavantatges i adequacié en termes de precisié, mida del model, temps d'inferencia
i robustesa. Aquesta investigacié obre vies per a més exploracié i aplicacions practiques, mostrant la
integracid sense fissures de I'aprenentatge automatic per a serveis en temps real com és la identificacié de
protocols Wi-Fi en comunicacions sense fil.

ESPANOL:

Este trabajo evalia el rendimiento de diferentes modelos de aprendizaje profundo para la clasificacion de
ondas en varios entornos de canal y condiciones de ruido. Nuestros resultados demuestran la superioridad
de las arquitecturas basadas en Transformer sobre enfoques ya establecidos como las CNNs en una amplia
variedad de entornos. Estos modelos fueron entrenados con datos sintéticos y aumentados con varios
escenarios para lograr una generalizacion robusta. Analizamos exhaustivamente el impacto de las desafiantes
condiciones de canal y ruido en las transmisiones inaldmbricas y en la prediccién. La comparacién entre
arquitecturas revela sus ventajas, desventajas e idoneidad en términos de precisién, tamafio del modelo,
tiempo de inferencia y robustez. Esta investigacién abre vias para mas exploracién y aplicaciones practicas,
mostrando la integracién sin costura del aprendizaje automdtico para servicios en tiempo real como la
identificaciéon de protocolos Wi-Fi en las comunicaciones inaldmbricas.

ENGLISH:

This work evaluates the performance of deep learning models for waveform classification in various
channel environments and noisy conditions. Our results demonstrate the superiority of Transformer-based
architectures over established approaches like CNNs in a wide variety of settings. These models were
trained with synthetic data and augmented with diverse scenarios to achieve robust generalization. We
extensively analyze the impact of challenging channel and noise conditions on wireless transmissions and
correct inference. The comparison of architectures reveals their advantages, trade-offs, and suitability in
terms of accuracy, model size, speed, and robustness. This research opens avenues for further exploration
and practical applications, showcasing the seamless integration of machine learning for real-time services
like Wi-Fi protocol identification in wireless communications.

Keywords

Wireless communications, Machine Learning, Deep Learning, Transformers, Convolutional Neural Network
(CNN), Data augmentation, Protocol identification, Wireless channel, Wi-Fi waveform.

Contents

1 Introduction and state of the art

1.1 Wi-Fi protocols description
1.2 Protocol identification
1.3 Machine learning for wireless communications L.

1.3.1 Genesys lab at Northeastern University
1.4 1Q samples transmission and collection
1.5 Previouswork
1.6 Stateoftheart

2 Goals of the project

2.1 Problem definition

2.1.1 Challenges of the wireless channel
2.2 Objectives
2.3 Specifications L

3 Proposed solution

3.1 Dataset
3.1.1 Signal analysis
3.2 CNN . .
3.3 Transformer
3.3.1 The attention mechanism
332 FromIQ samplestotokens
3.3.3 Hyper-parameter tuningo
3.3.4 Final architecture
3.4 Training & Testing
3.5 Models size comparison
4 Results
4.1 First experiment
4.2 Second experiment
4.3 Third experiment
4.4 Global comparison

5 Conclusions and Future Work
5.1 Future Work

A Streamlit Demo

~N o oo W W

11
12

13
13
14
17
19
19
20
21
22
23
24

26
27
28
30
32

36
37

41

1. Introduction and state of the art

This bachelor thesis presents the work developed by the Universitat Politécnica de Catalunya Data Science
and Engineering student Miquel Sirera Perell6 under the supervision of Prof. Kaushik Chowdhury (North-
eastern University) and Prof. Albert Cabellos-Aparicio (Universitat Politecnica de Catalunya). The task we
will be tackling consists of applying deep learning methods in order to perform inference over waveforms,
more specifically we will be classifying the protocol with which a signal has been generated through differ-
ent types of Neural Network (NN) architectures acting as the classifiers. The data used for classification
comprises Wi-Fi collected waveforms under four different types of protocols. We present a thorough com-
parison between the architectures presented as well as an analysis of its benefits and drawbacks in terms
of classification accuracy, inference time, size of the model and input size required to predict. Specifically,
we will evaluate various convolutional neural network-based (CNN) and Transformer-based models.

We also conduct an evaluation of how various environmental conditions affect the transmitted data
and examine their impact on the process of protocol identification. To assess this, we gradually expose
the models to a wider range of conditions, thereby enhancing their ability to generalize in our testing
environment. This investigation enables us to gain insights into the robustness and adaptability of the
models in different scenarios, providing valuable information for real-world applications.

1.1 Wi-Fi protocols description

As stated, we will be classifying Wi-Fi waveforms. Wi-Fi, short for "Wireless Fidelity”, is a technology
that allows the connection between devices and the internet or the communication between each other
in a wireless manner over a local area network (LAN). It is a wireless networking standard based on the
IEEE 802.11 family of protocols. Wi-Fi has made it possible for all kinds of devices, such as smartphones,
laptops, tablets, smart home devices, and others, to connect to the internet without the need for physical
wired connections. Wi-Fi typically operates at the 2.4 GHz or 5 GHz frequency bands. This technology,
which works through radio waves, allows for communication and high-speed data transmission between
devices within the area covered by an access point or Wi-Fi network router.

Several standards or Wi-Fi protocols have been developed over the years. These protocols define the
specifications for wireless communication and ensure compatibility between different devices that support
Wi-Fi. In this work, we will focus on classifying four commonly used Wi-Fi protocols:

(1) 802.11b: This was the first widely adopted Wi-Fi protocol, introduced in 1999. It operates in the
2.4 GHz frequency band and can offer a maximum data rate of 11 Mbps.

(2) 802.11g: This protocol, introduced in 2003, also operates in the 2.4 GHz frequency band and
supports data transfer rates up to 54 Mbps. It uses the same bandwidth as 802.11b and is fully
backward compatible with it.

(3) 802.11n (also known as Wi-Fi 4): Introduced in 2009, 802.11n was the first Wi-Fi standard to support
multiple-input multiple-output (MIMO), which greatly increased data throughput. It can operate in
both the 2.4 GHz and 5 GHz frequency bands. 802.11n offers improved speeds and range compared
to previous protocols, with data transfer rates up to 600 Mbps. Additionally, 802.11n devices can be
backward compatible with older protocols.

(4) 802.11ax (also known as Wi-Fi 6): Adopted in 2019, this backward-compatible protocol operates
in both the 2.4 GHz and 5 GHz frequency bands. It offers increased speeds, capacity, and efficiency

DL for Wireless

compared to previous protocols. Wi-Fi 6 supports data transfer rates up to several Gbps and is specifi-
cally designed to enhance throughput-per-area in high-density environments with numerous connected
devices.

These protocols possess distinct capabilities and demonstrate the technological advancements over
the years. The Wi-Fi protocol supported by a device determines its maximum data transfer rate and its
compatibility with other Wi-Fi networks and devices.

1.2 Protocol identification

The problem faced involves the classification of the waveforms that have been described, in different channel
conditions and noise levels that will be described in further detail later on.

Protocol identification is usually performed looking at a specific part of the transmitted signal named
the preamble. This is placed at the beginning of the transmission and allows the receiver to know how the
data is transmitted so that the communication can be effective.

In the case of Wi-Fi signals, each specific Wi-Fi protocol incorporates distinct patterns and synchroniza-
tion signals in the preamble, which play a crucial role in symbol timing recovery and frame synchronization.
Through analysis of this preamble section in the transmitted signal, the receiver radio is able to detect and
interpret these patterns, thereby identifying the specific standard used for data transmission. The unique
structure and synchronization sequence inherent to each Wi-Fi standard enable the receiver to differentiate
between protocols such as the ones we are utilizing (802.11ax, 802.11b, 802.11n, and 802.11g).

One of the main points of the presented solution, is that we will not be looking for the preamble but
just giving the raw received signal to our classifier in order to identify the standard being used at a specific
moment. This means that the network will have to learn the differences in the data to perform identification
and not how to decode any specific part. The identification will happen over samples that contain the
preamble, but also over parts of the data that in principle do not contain any of that information.

The solution will consist on two neural network architectures, namely a convolutional neural network
(CNN) and a Transformer-based network acting as the two model types that will be trained to identify
which of the protocols that has been described is the one that is being transmitted at a certain moment.
It is very important to notice that the classifier should be able to generalize without loosing performance.
The performance of our classifiers will be evaluated through classification accuracy.

1.3 Machine learning for wireless communications

Wireless communication refers to the transfer of information over a distance without the use of electrical
conductors or wires. Instead, it relies on electromagnetic waves, such as radio waves to transmit information
from one place to another. It is used in a wide range of applications, including cell phones, radio and
television broadcasting, satellite communication, and wireless networking.

Machine learning itself has been a point of interest in many different fields such as natural language
processing (NLP) with the current raise of large language models or image and video processing, for tasks
like classification, segmentation, denoising, etc. In recent years, the field of telecommunications, including
wireless communications, has taken interest in using machine learning techniques to solve some of the
challenges that they face. It has been applied in a variety of contexts such as for different tasks managing
the emerging concept of Open Radio Access Network (O-RAN), in security enhancing with ideas like radio

fingerprinting, beamforming optimization or inference at the edge. This last topic corresponds to the work
that will be developed in this thesis.

Specifically in this work we will be focusing on Wi-Fi transmitted waveforms with the objective to
perform protocol identification after receiving any kind of transmission. This responds to the interest of
being able to introduce ML modules that can perform real- or near real-time inference over some arriving
signal.

1.3.1 Genesys lab at Northeastern University

This thesis has been developed at the Genesys - Next GEneration NEtworks and SYStems Lab, a
laboratory group inside the Institute for the Wireless Internet of Things at Northeastern University. The
director of this laboratory is Prof. Kaushik Chowdhury. They have devoted big efforts in pushing the
state of the art inside wireless communications, with focus in recent years on applying Machine and Deep
Learning solutions to wireless communications problems.

It is widely believed that Artificial Intelligence (Al) will play a key role in the next generation of wireless
devices. These technologies that come after 5G, will include Al decision blocks in very important research
topics such as resource allocation, security enhancing, data rate improvement and signal classification. This
work will only focus on the former one.

Al solutions have emerged as groundbreaking tools in addressing conventional communication chal-
lenges, ushering in a revolutionary era of communication referred to as next-gen communications. This
paradigm shift has prompted the Genesys lab to diligently allocate substantial resources towards the ex-
ploration of myriad possibilities. With the field of Machine Learning (ML) is continuously evolving and
improving, the lab is committed to harnessing the full potential of Al and ML techniques to unlock inno-
vative approaches and a comprehensive toolbox that redefine the landscape of modern communications.

1.4 1Q samples transmission and collection

We will be working with samples at the physical layer to identify the protocol with which a waveform
is being transmitted, namely, 1Q samples. The in-phase (I) and quadrature-phase (Q) samples are used
to represent a modulated radio frequency (RF) waveform. They are composed of a real signal (I) and a
complex one (Q) that in conjunction will serve to modulate the desired signal.

IQ samples are a representation of the data in the time domain, that is normally changed into the
frequency one in order to decode the information that has been transmitted through the frequency or
amplitude modification of a base signal.

In a real life setting, this desired signal will be transmitted by a transmitter on one side and and received
by a receiver on the other one. When these signal or waveform is going through the air, acting as the
channel, it can suffer modifications that will affect the quality at the receiver side (making the classification
task harder). Environmental effects such as humidity, being in a closed or open space or the distance
between the two antennas transmitting and collecting data can have a decisive impact on what is received.
This poses an important problem that will be further explored.

The data that will be used for this project will not be obtained from a real setting, it will be collected
through MATLAB and the just described channel effects will be added through already existing and specific
software. Preexisting synthetic wireless frameworks allow us to train and test solutions without the expensive
task of collecting real data, being understood by real data the one collected by the transmission of data
from a transmitter to receiver through any kind of channel.

DL for Wireless

Despite the fact that the model will be trained and tested with synthetic data, the aim of this work
is that the found ML solutions are able to generalize in a manner that after their deployment on a real
receiver, the models are still able to display good classification accuracy.

1.5 Previous work

There was some background work previous to this thesis that consisted in reproducing an state-of-the-
art paper in ML for radio frequency fingerprinting (RF fingerprinting). This was done within the subject
Introduction to Research in Data Science and Engineering (I2RCED) during the fall semester of 2022.
The specific paper reproduced was ORACLE: Optimized Radio clAssification through Convolutional neural
nEtworks [11], in which they sought to identify radio signatures through 1Q samples at the physical layer.

The process of radio frequency fingerprinting (Fig. 1) can be defined as the process to recognize the
device which is transmitting a radio waveform by only looking at the properties of the transmission itself.
RF fingerprinting is possible due to the fact that a radio device will introduce very small modifications to
a signal being transmitted due to little variations on the hardware (HW). This means that even two radios
corresponding to the same manufacturer and model and transmitting the same signal, can be identified as
different thanks to these so called HW impairments. By only focusing on the radio signatures that will
not vary with mobility or environmental changes we should be able to identify devices even in changing
conditions. The ML classifier will learn specific patterns that despite being affected by the channel of the
transmission, should be good enough to predict the correct class by the classifier.

It needs to be pointed out that this was not always true as some channel variations can indeed hide
the signature of the devices, as well as in our case the protocol being transmitted. Channel conditions
are the most important problem that needs to be faced by this kind of ML modules with the intention of
performing inference on real deployments.

D)~

Radio2 |))) > | Receiver »| ML module/

Classifier

Radio 16)))

Figure 1: Radio Frequency fingerprinting schema.

The results obtained were highly similar to those obtained in the original paper. We were able to
validate and support the conclusions drown from the ORACLE paper. We were also able to observe how
the channel variations affect more to the signal than the imperfections that the radio hardware might

introduce. Being the channel in this problem and the one faced in this thesis an important challenge to
deal with.

It is relevant to the work presented because it is an example of a machine learning classifier, in this
case a CNN performing inference over the same kind of data. While we were identifying the device through
IQ samples in I2RCED, now we will be identifying the protocol of the waveform being received. It also
helps demonstrate the interest in research and industry for the problem of adding ML modules in the
telecommunications loop.

The other reason the previous work is highly relevant is because the architecture used for the convolu-
tional network is very similar to the one that will be used in this thesis, being the only difference the input
size or the amount of IQ samples we will be using in order to predict which protocol is being used.

In the current project, the CNN architecture is considered as a baseline, since it was already implemented
and used in other similar papers in the lab group such as [11], the one we already explained on RF
fingerprinting or [12], in which this type of neural network is used to decode a modified waveform to avoid
having to transmit a part of the preamble in a signal.

1.6 State of the art

In this subsection, we provide an overview of different deep learning methods use in several RF problems.
The problems we provide examples for are modulation classification, RF fingerprinting, beamforming or
semantic communications. These are classical problems inside the field of telecommunications and solutions
have been explored using machine learning methods.

An intriguing observation lies in the widespread utilization of Convolutional Neural Networks (CNNs)
[11, 7, 9] as a prominent architecture in machine learning applied to wireless communications problems.
Within the domain, CNNs have emerged as the primary and dependable choice for numerous challenges.
The inherent capability of this architecture to preserve and extract spatial relationships through the usage
of kernels proves immensely advantageous across a multitude of presented problems. By leveraging these
kernels, CNNs aptly capture and analyze the intricate spatial features embedded within wireless communi-
cation datasets, facilitating enhanced performance and accuracy. The prevalence and success of CNNs in
addressing wireless communications challenges underscore their significance and efficacy as a very important
tool in this domain.

Despite the widespread use of this neural network architecture, there have been observations regarding
opportunities for improvement. Consequently, alternative architectures have been explored due to their
superior adaptability to specific problems or particular properties that render them more suitable in certain
contexts. Auto-Encoders, as in [13], have demonstrated exceptional performance in learning compressed
representations and have greatly contributed to numerous denoising applications. Another captivating tool
are generative adversarial networks (GANSs), as highlighted in [10]. Adversarial training with GANs presents
intriguing prospects for augmenting wireless datasets, which can be prohibitively expensive to collect in
real-world settings. This architecture serves to bridge the divide between synthetic generated data and
real-world data, enabling the generation of synthetic samples that closely resemble real-world data.

The emergence of Transformers in recent years has presented an intriguing approach to addressing
several challenges with a fresh perspective. Their application in various contexts, as demonstrated in
[4, 16], has showcased the remarkable capabilities of this architecture even in highly adverse conditions
characterized by the presence of high noise or challenging channel environments. One of the defining
features of Transformers is the attention mechanism, which is explained in further detail later in this thesis
(3.3.1). This mechanism empowers the model to obtain enhanced representations of the input data, thereby

DL for Wireless

’ Paper \ RF Application \ Architecture

Contributions

[11] RF fingerprinting | Convolutional The use of a convolutional neural network to identify
Neural Network | radios in a large pool of bit-similar radio devices, and
(CNN) also the introduction of impairments to enhance clas-
sification.
[15] | RF fingerprinting | Recurrent Neural | The use of long short-term memory based RNNs to
Networks (RNN) | perform transmitter classification with signal to noise
ratio down to -12 dBs.
[10] | RF fingerprinting | Generative Using this kind of architecture they identify rogue RF
Adversarial Net- | transmitters and classify trusted ones.
works (GANs)
[7] Beamforming Convolutional Using a CNN at the transmitter side in order to opti-
Neural Network | mize user equipment performance, handling channel
(CNN) evolution as well as the beamforming phase.
2] Beamforming Multi-layer per- | Introduces a machine learning module to learn the
ceptron (MLP) optimal beamforming strategy by training on received
sequences which represent the achievable rates.
[13] | Beamforming Auto-Encoder An hybrid beamforming approach based on an Auto-
(AE) Encoder neural network achieving better performance
in terms of bit error rate than other competitors.
[9] Modulation classi- | Convolutional The use of a CNN to perform automatic modula-
fication Neural Network | tion classification avoiding the requirement that other
(CNN) methods presented of manually extracted features.
(4] Modulation classi- | Transformers The Transformer architecture is used for automatic
fication modulation classification, exploiting the attention
mechanism to obtain better results even in higher
noise conditions.
[16] | Semantic trans- | Transformers Redesign of the Vision Transformer [5] as a backbone
mission in order to perform semantic image transmission to
obtain better end-to-end transmission through a wire-
less channel.

Table 1: Overview of the state-of-the-art ML methods for wireless applications.

boosting performance and classification accuracy in diverse problem domains, including modulation and
protocol classifications, mirroring the focus of our current project.

Finally, it should be pointed out, that another interesting telecommunications problem that has been
tried to solve with ML is wireless localization. In [3] we can observe how several techniques and architectures
have been tried with some interesting results using different RF signals attributes in order to localize their

targets.

2. Goals of the project

In the preceding section, we presented a comprehensive overview of various problems within wireless com-
munications and using RF signals where machine learning has demonstrated its utility. Additionally, we
provided an initial description of the problem at hand. In this subsequent section, we shall delve deeper
into the problem domain, aiming to define the specific challenges, establish clear objectives for the project,
and outline the corresponding specifications that will aid us in assessing the success in solving our task.

2.1 Problem definition

As mentioned in the introduction, we will perform classification of Wi-Fi transmissions sent under four
different protocols. The four protocols being classified are the already explained 802.11ax, 802.11b, 802.11n
and 802.11g. These are defined on the 802.11 IEEE standard.

This classification will happen only using raw |Q samples at the physical layer without any prior knowl-
edge on the signal about where the preamble is or what information does it contain that would help identify
the protocol in a normal wireless communication schema.

As part of the experimental setup, synthetic transmissions will be generated to collect a diverse dataset,
simulating various real-world scenarios. To evaluate the robustness and effectiveness of the model, different
levels of noise will be deliberately introduced to the collected transmissions, thereby subjecting the models
to challenging and adverse conditions. This comprehensive evaluation will enable us to assess the model's
performance under varying noise intensities, providing valuable insights into its resilience and generalization
capabilities.

In addition to noise manipulation, we will incorporate three distinct channel models into the base sig-
nals. These channel models aim to replicate a wide range of environmental conditions that can impact the
transmitter-receiver connection. By simulating different channel characteristics, such as fading, interfer-
ence, and multi-path propagation, we introduce a higher level of complexity into the experimental setup.
This ensures that the model is exposed to diverse and challenging transmission scenarios, allowing us to
evaluate its adaptability and reliability in realistic wireless communication environments.

With the data prepared through diverse noise and channel conditions the challenge is to train a ML
classifier that is able to achieve good performance in all the presented conditions. Performance will be
measured through classification accuracy.

These augmentation of the dataset by applying noise and channel conditions to the signals aim to
reproduce the varying environments in which ML models that are pretrained offline have to face when they
are deployed in real settings. To explain this, in the next section we will go in further detail of this channel
challenge for wireless transmission and the specific types of channel models that we will be applying to our
IQ samples.

2.1.1 Challenges of the wireless channel

As mentioned before, the channel in which the wireless transmission takes place poses a really important
problem in deploying static classifiers, as for example machine learning and deep learning based ones.
Training data can follow a very different distribution than the one that will be observed when the model is
performing inference in a real-life scenario.

Modeling diverse channel conditions have been an ongoing problem in the wireless and telecommuni-

DL for Wireless

cations field. Several applications have been developed with limited success in reproducing certain real-life
scenarios. Some of the most important factors that affect wireless transmissions and channels itselves are
the following:

Noise: This factor corresponds to environmental noise, which affects the wireless signal by interfering
with it. It can be natural or human-made, such as noise from nearby devices or radio frequency
interference (RFI) from other sources. It is also known as background noise.

Weather Conditions: Weather or climate conditions, particularly in outdoor wireless systems, can
cause signal degradation. Rain, snow, fog, or even humidity can affect channel conditions by intro-
ducing signal attenuation, scattering, or absorption.

Distance: As the distance between the transmitter and the receiver increases, the transmitted signal
may be affected by attenuation, impacting signal strength and quality. This can also result in the
receiver observing a more distorted version of the signal.

Obstacles and Reflections: A wireless signal can reflect off physical obstacles. Buildings, walls, trees,
or other objects can obstruct or scatter the wireless signal. These reflections can create multipath
propagation, causing interference and signal degradation.

Interference: When different wireless devices share the same frequency band, it can create disruptions
in the transmitted signal. This interference can have various origins, including human-made devices
or even atmospheric conditions.

Fading: Fading refers to the variation in signal attenuation caused by changes in the wireless propaga-
tion environment. Some of the most common causes of fading are multipath propagation, obstacles,
or atmospheric conditions.

Frequency Band: The propagation characteristics are partly defined by the frequency bands being
used. Higher frequency signals are more susceptible to attenuation from obstacles and atmospheric
conditions.

In our case, we will not be able to modify or take into account all these elements, but we are able to

modify decisive factors such as reflections, interferences, fading, noise and we work under the assumption
of a fixed frequency band. These modifications in the environment give us an approximation of how our
models would perform in the wild. We will be applying several channel conditions through the MATLAB
engine for Python. To obtain the results, we use three different channel models that are explained in the
following list:

(1) Rayleigh fading [1]: it is a statistical model employed to capture the influence of the propagation

10

environment on a radio signal, as experienced by wireless devices. This model serves as a mathematical

representation that characterizes the random variations in signal strength and quality resulting from

the interaction between the transmitted signal and the surrounding multipath environment. It provides
a good approximation for many real-life wireless scenarios in which multipath propagation plays a big
factor in how different will be the signal received. The main assumption of this model is that the
signal being transmitted will fade or vary following the Rayleigh distribution, which gives name to this
channel model.

(2) TGax: this channel model filters a signal through an 802.11ax indoor multiple input multiple output
(MIMO) channel following the approach develoved in [8]. It was implemented to test the protocol with
the same postfix (802.11ax) in order to evaluate its performance of these Wi-Fi systems. Again, it will
consider and model several of the mentioned factors that can affect a wireless transmission. The main
aspect of this model is that it can adapt to specific deployment scenarios. In our experiments we will
be using the delay profile named Model-B. This model sets aspects like maximum delay, breakpoint
distance or RMS delay spread.lt is supposed to help carrying a realistic assessment of Wi-Fi signal
transmissions.

(3) TGn [6]: this last channel model accounts for filtering an input singal through an 802.11n mulitpath
channel model. We will also be using the same delay profile. It is a very similar channel model to
the TGax channel but it can only handle an smaller number of parallel transimissions and it is less
efficient.

These three channel models, together with the absence of any channel model will serve as our bench-
marks to assess the classifiers performance. All of them pose different challenges and environmental
conditions that our models will have to face in order to achieve the desired performance. It should be
noticed TGn and TGax are more similar between them and as a consequence, Rayleigh channel model is a
more different channel model to these two.

2.2 Objectives

Given the problem of Wi-Fi signal protocol classification. We propose well-defined objectives that encap-
sulate the desired outcomes and milestones of our project. These are the following:

(1) Train a classifier that is able to perform in several channel and noise conditions: there is a
necessity for a model that is able to generalize in the challenging conditions that we explained in
the previous section. The classifier not only needs to be able to achieve good performance on the
different channels, but also maintain it through different levels of noise.

(11) Compare different neural network architectures: we will be comparing the well established CNN
in the wireless domain against the Transformer. Exploring their benefits and downsides while trying
to get an overview of their internal functioning and properties that make them suitable for this
problem.

(111) Design the Transformer architecture: in the same line as the previous objective, we will have to
design the neural network through hyper-parameter tuning. The design decisions will include number
of layers, learning rate, batch size and input size among other.

(1V) Assess the performance: we will be taking into account classification accuracy, number of param-
eters of the model, inference time and input size to evaluate the performance of our classifiers.

(V) Understand and check the challenge that the channel poses: as explained earlier, environment
is able to change the distribution of data samples transmitted over the air. We want to analyze the
problem and how our models are able to adapt to the changing conditions.

(V1) Create an augmentated dataset: in order to face the task we will have to create a dataset
augmentated throught the MATLAB engine that shows the model the adverse conditions at training
time so that the underlying protocols particularites can be learnt by the model.

11

DL for Wireless

(VIl) Compare the change in performance when the model is shown all conditions: we will assess

how performance actually changes when the model is shown specific conditions at training time.

(VII1) Provide a description of the training and testing methodologies: in order to foster reproducibil-

ity, we will explain the process we followed that lead to the presented results.

These set of objective represent the guidelines for the project and aim to present a comprehensive guide

of all what is wanted to achieve in this thesis.

2.3 Specifications

In this subsection we will define a set of specifications along with some performance metrics in order to
ensure a systematic and objective evaluation of the work developed in this thesis. These metrics, will serve
to quantitatively measure our success and how efficient and effective our proposed solution is. We will
be using metrics such as classification accuracy in several signal-to-noise ratio (SNR) scenarios or some
computational efficiency indicators to evaluate and carefully assess the performance and impact of the
models developed in this project. The following list will encapsulate the specifications and performance
metrics we aim to achieve:

12

Each transmission will only correspond to one protocol. Therefore, there will be no overlapping
between the protocols being transmitted.

This thesis will only use data generated in a synthetic manner. The reason behind this is that real-
world wireless datasets are more expensive to collect and the aim of this thesis is to prove the utility
of the methods described.

The solution needs to perform well (over 95% classification accuracy) in environments with reduced
signal to noise ratio, SNR over 10 dBs.

The final architecture selected should be able to reach good levels of accuracy even in presence of
high noise interference. This means an accuracy of over 80% in the range between -15 and 10 dBs.

The proposed solution should be able to perform in a similar manner in all the environments that
will be tested, these include no channel applied and Rayleigh, TGax and TGn channel models.

Inference time for the designed models should be under 1 ms.

Model size should not surpass the 10 million parameters, size is an important factor when working
in edge devices and we should aim for a small model that is able to solve the task.

Usage of an experiments tracking framework to save the information and results of any run during
the project.

3. Proposed solution

To address the classification problem outlined in 2.1, we will employ two distinct neural network architectures
as our classifiers. The first architecture employs a convolutional neural network (CNN) to leverage the
extraction of local features from the 1Q samples, enabling the identification of the transmitted protocol.
This approach capitalizes on the CNN’s ability to capture and analyze spatially close patterns within the
IQ samples.

The second architecture is a Transformer-based model, which incorporates the named attention mech-
anism as discussed later in 3.3.1. By leveraging this attention mechanism, the model aims to derive
enhanced representations of the input IQ samples, subsequently improving the classification performance.
The Transformer-based architecture’s ability to capture global dependencies and contextual relationships
empowers the model to discern intricate patterns within the IQ samples, further enhancing the accuracy
of the classification process.

It should be mentioned that the introduction of the Transformer architecture for a waveform classifica-
tion problem is something somehow novel and it will be compared with the CNN. The later type of model
has been more often implemented for this kind of task. The results by the CNN model will act then as the
benchmark that we aim to improve.

3.1 Dataset

The data utilized for both training and testing the model consists of synthetic transmissions generated
using MATLAB. Using this software, we produced files containing transmissions corresponding to the four
protocols targeted for classification. Each file contains a continuous stream of IQ samples represented as
complex numbers in the form of / + Q). During the training and testing phases, these streams are divided
into equally sized partitions, which serve as input data for our models. The number of generated files per
protocol is summarized in Table 2.

Wi-Fi protocol | Sampling Rate | MCS Modulation # of training | # of testing
files files

802.11b 20MHz* QPSK DSSS 2000 500

802.11g 20MHz 16-QAM OFDM 2000 500

802.11n 20MHz 16-QAM OFDM 2000 500

802.11ax 20MHz 16-QAM OFDMA 2000 500

Table 2: Summary of available dataset. *upsampled 802.11b from 11MHz to 20MHz

It is important to note that these 2500 files per protocol will undergo random variation in terms of noise
levels, ranging from -20 dB SNR to 30 dB SNR, or experience one of the aforementioned channel conditions,
including Rayleigh, TGn, or TGax. Consequently, the same base signal may be utilized during training with
varying levels of added noise and different channel conditions. This approach aims to augment the data
and enhance the resilience of our models to different environmental conditions that make the waveform
classifications problem harder. A generalized good performance of our models in different environmental

13

DL for Wireless

settings is a fundamental objective of this project. Despite using some of the samples multiple times with
different levels of noise or channel, an input base sample belonging to the train set will never be used as a
test one even if a certain combination of noise-channel has not been used during the training.

Although the data is synthetically generated, the incorporation of noise and channel variations aims
to create a realistic portrayal of Wi-Fi transmissions collected from real-world scenarios. Consequently,
our models should demonstrate robustness in real settings without significant performance degradation. In
addition, we should mention the scope of this thesis is limited to working with synthetic samples, and the
use of real data will not be tested in this work and will be considered as future work.

For each protocol, in Table 2 we can observe other properties, next list aim to provide a description of
this other parameters that were set during the data collection and curation stage and influence how the
synthetic waveforms are created.

e Sampling Rate: it represents the frequency at which the analog signal being transmitted is captured
or sampled since digital representations are always discrete. It is a concept that shows when digitizing
a continuous analog signal. For the signals collected we are using a sampling rate of 20kHz, which
means that 20.000 samples will be recorded per second of the given transmission.

e MCS: or Modulation and Coding Scheme, defines a set of of modulation schemes (such as BPSK,
QPSK, 16-QAM, 64-QAM, etc.) and coding rates (such as 1/2, 3/4, etc.) that can be used to
transmit data. Coding rates refer to the amount of redundancy introduced in the transmission to
ensure information is accurately transmitted. Higher MCS values will provide higher data rates but
can be prone to more errors in the transmission in adverse channel conditions, while lower ones
provide better error resilience but lower data rates. This trade-off needs to be dynamically assessed
to adjust the modulation scheme to the channel conditions. In the data that we generated, 16-QAM
is the choice for every generated waveform except for 802.11b, which is not compatible and uses
QPSK in this case.

e Modulation: This refers to the specific modulation and access technique used for the transmission.
DSSS or Direct-Sequence Spread Spectrum, OFDM or Orthogonal Frequency-Division Multiplexing
and OFDMA or Orthogonal Frequency-Division Multiple Access are different options available, being
OFDMA the one that allows for higher data rates. DSSS is the most different modulation technique
since it spreads the signal over a wide frequency band to improve resilience.

3.1.1 Signal analysis

The purpose of this subsection is to get a grasp of how the signals being received look. This will be analyzed
in two different levels. First, we will be checking how different signals from different protocols look between
each other. Secondly, we will look at how much does the environment impacts the transmitted waveform.

To begin with, Figure 2 provides a glimpse of an example window of a waveform for each of the
four protocols under consideration. As mentioned previously, the 1Q samples are represented and saved
as complex numbers, and the plots depict the magnitude of these complex numbers. Consequently, the
dynamic range for all the plots does not fall below zero. Upon examination, it becomes very apparent
that protocol 802.11b exhibits the most distinct characteristics compared to the others. This discrepancy
can be attributed to the distinct modulation technique employed by this particular protocol, which differs
significantly from the rest. Also it is worth mentioning that the signals for 802.11b protocol are not always
one, but due to the modulation technique that it uses the magnitude of them are. Another noteworthy

14

802.T1ax 802.11b

2 21

1 T

0 0
0 200 400 600 800 1000 0 200 400 600 800 1000

802.11n 802.11g

21 21

1§ 1§

0 : . ' . : ; 0 . . : . . ;
0 200 400 600 800 1000 0 200 400 600 800 1000

Figure 2: Example window display for each of the protocols, horizontal axis is for time or index of sample and
vertical axis is the module of the complex representation of the | and Q component.

observation from this figure is the striking similarity between the remaining protocols. Both 802.11n and
802.11g showcase nearly identical dynamic ranges, while 802.11ax exhibits a slightly lower dynamic range.
This initial analysis enables us to assess the appearance of received signals when no channel effects or noise
are present. Furthermore, it serves as a valuable reference point for evaluating subsequent signal variations
introduced by channel conditions and noise.

Now, let's delve into the impact of noise using Figure 3. This insightful figure showcases six distinct
levels of noise superimposed on the same 802.11ax base waveform, which is a waveform present in our
training data. As a reminder, in the experiments the intention is to simulate a continuous range of signal-
to-noise ratio (SNR) values spanning from -20 dBs to 30 dBs by applying varying levels of noise. By closely
examining the figure, we can observe two noteworthy phenomena arising from the introduction of noise.

Firstly, as the noise intensity increases (or SNR decreases), the dynamic range of the signal expands.
This can be attributed to the fact that in order to decrease the SNR, which represents the ratio of signal
power to noise power, if the signal power is fixed (it is always the same waveform) we can only increase
the power of the noise component. Consequently, the overall power of the received signal also increases.

Secondly, the shape of the signal undergoes notable changes in the presence of noise. This can be
attributed to the inherent nature of Gaussian noise, which is the type we are using and is randomly dis-
tributed following the Gaussian distribution. As a result, the noise introduces a non-deterministic variation
in our signal, giving rise to distinct waveform patterns even when the base signal and noise level are the
same.

These SNR levels indicate that we will have training and test samples where the signal power is 1000
times stronger than the noise power, corresponding to 30 dBs. Additionally, we will have samples where
the waveform strength is only one-hundredth of the noise power, corresponding to -20 dBs. By training
our models with this wide range of SNR values, we aim to develop robust and resilient signal processing
algorithms capable of handling real-world scenarios where noise plays a significant role. This variation in
SNR levels ensures that our models can effectively handle the challenges posed by different noise intensities,
ultimately enhancing their performance and adaptability in practical applications.

15

DL for Wireless

SNR: 30 dBs SNR: 20 dBs
21 2]
1 11
0 100 200 300 400 500 600 0 100 200 300 400 500 600
SNR: 10 dBs SNR: 0 dBs
21 3
2<
'|4
'|<
0 100 200 300 400 500 600 0 100 200 300 400 500 600
SNR: -10 dBs SNR:-20 dBs
7.59
5.0/ 201
2.5 10+
0.0+ 01
0 100 200 300 400 500 600 0 100 200 300 400 500 600

Figure 3: Evolution of how different levels of noise affect the same signal received. In this case the base signal in
which the noise is applied is the same for each frame and belonging to protocol 802.11ax. The models will be
presented samples with noise down to -20 dBs. Horizontal axis is for time or index of sample and vertical axis is the
module of the complex representation of the | and Q component.

In addition, Figure 4 provides us with insights into how different channel conditions impact Wi-Fi
transmissions. To demonstrate this, we passed a 802.11b waveform through various channel conditions
to visualize their effects. It is evident that the environmental conditions we simulated have a significant
influence on the dynamic range and shape of the received signals.

In particular, the TGn and TGax channel conditions substantially reduce the dynamic range, resulting
in a magnitude reduction on the order of 1e — 3. On the other hand, the Rayleigh fading channel does not
have as pronounced an effect on the range of received values, but it does introduce considerable variations
in the shape of the transmitted waveform. This is noteworthy as the base signal was originally a constant
magnitude transmission.

The Rayleigh fading channel exhibits also the largest difference between the maximum and minimum
values, further emphasizing its impact on the transmitted waveform. It is important to highlight that
each of the channel models significantly alters the received signal, leading to variations in the waveform
characteristics.

After analyzing and evaluating the visual representations presented in Figures 3 and 4, it becomes
evident that the influence of the environment, whether it manifests as a channel model or as Gaussian
noise, exerts a significant and profound impact on the wireless transmission. This realization highlight
the necessity of augmenting the dataset to facilitate the development of robust and adaptable models

16

No channel applied Rayleigh

1.051
1.33
1001 1.32
1.31
0.951 1.30

0 100 200 300 400 500 600 0 100 200 300 400 500 600

TGn TGax
0.00151 0.0030
0.0025
0.0010

0.0020
0.00051 0.0015

0 100 200 300 400 500 600 0 100 200 300 400 500 600

Figure 4: Visualization of how the different channel models that we will apply modify the signal. Notice the
change in dynamic range for each of the channels. Horizontal axis is for time or index of sample and vertical axis is
the module of the complex representation of the | and Q component.

capable of effectively generalizing and performing well in unforeseen and diverse environmental conditions.
By augmenting the dataset, we can enhance the capacity of our models to encapsulate the intricacies
and complexities inherent in real-world scenarios, thereby fostering a more reliable classifier in this kind of
deployments.

Lastly, it should be mentioned that the loading and saving of the signals once are generated are through
the implementation of a Pytorch dataset class. Thanks to this class, we can easily load the signals as
batches using the integrated Pytorch dataloader object.

3.2 CNN

The initial classifier proposed as a potential solution consists of a combination of a convolutional neural
network (CNN) followed by a multi-layer perceptron (MLP) head. CNNs offer compelling advantages in
this context, such as their ability to exhibit spatial invariance, which allows for effective pattern extraction
across different regions of the input. Additionally, CNNs leverage a relatively smaller number of parameters
compared to other architectures, leading to more efficient and manageable models. Moreover, the inher-
ent design of CNNs facilitates the direct input of raw data, as the neural network simultaneously serves
as a feature extractor. The convolutional block will serve as the backbone to extract information and
representations from the raw IQ samples that are the input to the model.

This type of neural network architecture has been around since the 1980s and it has served as a baseline
deep learning framework for several works in the wireless communications domain as analyzed in Table 1.
The already discussed advantages that this architecture bring to the table made it very suitable and the
first choice in several problems. That is why the performance of this classifier will act as a benchmark that
the Transformer-based models will have to try to improve.

Our classifier model (Fig. 5) is composed of a layer norm in the temporal dimension or S. This layer is
followed by two convolutional layers with a Max pooling in the S dimension and then by two fully-connected
layers. The input is a tensor or slice of size 2x512 containing the windowed |Q samples. To create the

17

DL for Wireless

Input slice e N RelLU LogSoftmax
RelLU RelLU

Flatten

yibua) a01|S

Embeddings

PL|00dXEe

S
991|S
wJioNJakeT
| Ja/e| [euoiInjoAu0)
|
pL|00dXel
Z 1afe| |euoiinjoauog
|
Jake| paroauuog AIn4
\
Jake| 1nding

k=[64,17]1 k=[128,1,3 S
) \[] []) —

Convolutional block

Figure 5: Chosen convolutional neural network architecture with a Feed Forward classification head.

input of this model we will just partition the signal in the file creating the 2xS5 slices. One dimension of
the input is the in-phase samples and the other one is the quadrature-phase samples of the waveform.
The first step, a normalization of the input | and Q dimensions is intended to improve the performance
of the model against the different dynamic ranges that we saw in 3.1.1. This tensor goes through a first
convolutional layer consisting of 64 filters or kernels of size 1x7. We can interpret this step as extracting
features on each of the real and complex parts of the signal separately. Afterward, the result of this first
layer goes through a Max-Pooling layer also individually in the 2 dimensions. Following this, the output is
processed by a second layer with 128 filters of size 1x3 with another Max-Pooling operation after it. In this
second one, we also try to extract information from both phases of the signal separately. The output of
this layer is then flattened and fed into a first Fully Connected layer with 256 neurons. Finally, the resultant
tensor is connected to an output layer with a number of output values equal to the number of protocols.
This last layer is followed by a logSoftmax function that will return the logarithm of the corresponding
probability distribution over the protocols that the Softmax outputs. The two convolutional layers and the
Fully Connected one after the convolutional block are followed by a Rectified Linear Unit (ReLU) activation
function acting as a non-linearity for our model.

The result is a vector of 4 positions where each position represents the logarithm of the probability that
a certain protocol is used as the standard for that specific Wi-Fi transmission. We obtain the classification
accuracy by comparing it to the ground truth of the input vector. The ground truth is available since we
know to which recording those values belong, and the recordings are saved in folders depending on which
protocol they belong to. This metric will determine the quality of the classification and allow us to compare
our results with the ones obtained by the models proposed in 3.3.4.

18

3.3 Transformer

The second architecture we will explore for the problem is Transformer-based. This architecture was
introduced in the highly cited paper " Attention is all you need” by A. Vaswani et al. [14]. It is a neural
network architecture widely used in the recent years and proven effective in several domains such as natural
language processing (NLP), computer vision, speech recognition and synthesis or recommendation systems.
Transformer-based models have revolutionized applications such as machine translation, text generation,
sentiment analysis, text-to-speech or object detection among others.

Although it is true it is also suitable for applications in which non-sequential data is used. It has
been mainly applied with sequential data. The reason behind it is that the data that is inputted to this
architecture needs to be represented as a sequence of tokens. Each token represents a unit of information.
For example, in the context of NLP tokens can be words (subwords or even characters). Any of these,
represent a smaller division of the whole sequence which in this case would correspond to a sentence.

The key aspect of this architecture is the so called attention mechanism. It allows the model to create
better representations of the inputted tokens by mixing their information and allowing each of the tokens
to pick information from the other tokens present in the sequence. The way in which this is done will be
explained more in detail in 3.3.1. The contextualized embeddings or representations after the Transformer
encoder layers will be followed by a Fully Connected layer and an output layer with a neuron for each of
the four classes in our problem. Since the task for our model is simply a classification one, we will only
be using the encoder part of the full Transformer architecture. This is due to the fact that we are not
generating any sequence when predicting which protocol a transmission belongs to.

3.3.1 The attention mechanism

As mentioned earlier, the attention mechanism is the key piece inside the Transformer architecture. It
allows each of the tokens within a sequence to attend to the most relevant parts of the same or different
sequence. This enables the tokens to utilize their token embeddings to create an improved representation
that is contextualized among the accompanying tokens and enhances the network's ability to learn. The
way in which this architecture achieves this is similar to the schema used in recommendation systems.
In such systems, you typically compare the similarity of a given query to some keys or information that
describe the actual content you want to retrieve. Depending on the similarity or the quality of the match,
you return the most relevant result first.

In the Transformer context, each token of the input sequence, after going through a linear transforma-
tion, will be transformed into a query, a key and a value vector. Then by doing the cross product between
the query of a token with all the token's keys we will obtain the attention scores. These values will be
normalized and applied a Softmax. Finally, the embedding that will come out of the attention operation is
the weighted sum of the values of the tokens, with those attention scores or query-key similarities computed
acting as the weights. We just described the attention formula (equation 1) as it is in [14]. This formula
gives us a description of how the attention mechanism uses Q, K and V, which are are the queries, keys and
values matrices respectively and \/dj is a normalizing factor representing the square root of the dimension

of the key vectors.
KT

Attention(Q, K, V') = softmax(?ﬁ
k

Another important piece to explain and pay attention to is the multi-head attention. The concept
behind it is that we will now give the model the ability to attend at different pieces of information of the

)V (1)

19

DL for Wireless

input in order to produce even better representations for the tokens. Equation 2 describes the formula used
to compute the multi-head attention.

MultiHead(Q, K, V) = Concat(heady, ..., headh)WO
where (2)
head; = Attention(QW., KWK, VW)

These two concepts are the base of the Transformer architecture and started a revolution and a shift
towards this kind of neural network in the field of artificial intelligence. Some of the other advantages it
provided was eliminating the recurrence mechanism inside recurrent neural networks, which were previously
the most used type of architecture to work with sequential data. This means that it can process the whole
input in a parallel manner since it does not require the computation on a previous token to compute the
representation of another one. The other advantage is that with this purely attention-based design we
allow the model to access all other tokens at any given time directly to bypass any kind of information
bottleneck in the sequence.

3.3.2 From IQ samples to tokens

Bringing this to our current problem, we are presented with an stream of continuous 1Q samples. This is
our sequential data. The first step is dividing this uninterrupted flow of complex numbers in vectors of
size 2xN. By doing so we will obtain the sequences that serve as the model input. As we also need the
tokens that form the sequence, the approach we take is splitting this N samples conforming the sequence
into equally sized chunks of S IQ samples. That will correspond to our words inside the sentence. The way
in which we do that can be visualized in Figure 6.

L
2 :2(12 File containing 10 samples |:|H
N
T Sequences
L.
2 - Sequence
> S S M Slices
2 Slice Slice oo Slice
Flattening of 2XS
|0 samples 1 1QIQIQ.. Token

Figure 6: Partition of transmission file into sequences, sequences into slices and slices into tokens by interleaving
the I1Q samples.

An additional crucial aspect needs to be addressed. 1Q samples represent a 2D stream of data, as they
encompass both the in-phase and quadrature-phase dimensions. However, our tokens should consist of

20

1-dimensional vectors. To overcome this challenge, we adopt a strategy of interleaving the values from the
| dimension with those from the Q dimension, thereby creating tokens that serve as input for the model. In
essence, we merge the two dimensions by zipping them together, resulting in a single vector with twice the
length. This process can also be visually depicted within the same figure, providing a clearer understanding
of the transformation.

Now, each of the M sliced vectors or tokens inside the continuous stream of 1Q samples will go into
the Transformer model layers to get an improved representation of the input of the model that will help
enhance the performance of our model.

3.3.3 Hyper-parameter tuning

To choose the hyper-parameters we use for the training and design of the Transformer-based model we
conducted a sweep. A sweep consist of using different combinations of hyper-parameters for a model trying
to maximize a metric (validation accuracy in our case). We also do that trying to use the smallest model
possible in terms of number of parameters. Figure 7 shows all the combinations that had been tried during
the hyper-parameter tuning phase. Each line indicates what value was chosen for each hyper-parameter for
a particular run and the color gradient the value of validation accuracy that was obtained for that specific
combination. Notice that all combinations obtained high accuracy values, higher than 96.5%, but we aim
at getting the maximum accuracy possible.

Epochs Batch size Layers Pos. Encoder lr Seq. length Slice length Val. accuracy

15 0:00050— 130 130 1.000

14 120 120

0,995

13 5 10) 110

12

00990

11 /

10

3 . 0.00000

Figure 7: Parallel coordinates plot for hyper-parameters sweep.

After analyzing the results from the sweep, we decided to use as final hyper-parameters the following
values. For number of epochs it seems that training for longer time is not beneficial to the final result so
we choose 5 epochs as our training time. A batch size of 122 and learning rate of /r = 0.0002 were chosen
although there is not a strong pattern in the performance when varying these values in the designed ranges
for the experiment. To give the model enough capacity to obtain great performance, we also choose 2
layers.

For the use of positional encoding, the decision taken is not to use it. The sweep indicates that the

21

DL for Wireless

model performs as well or better without it. It makes sense not to use a positional encoding since our
tokens have really low probability to be repeated in the presence of noise or channel, so every word that
the model sees is different, although all of them are similar. This is not the case in classic NLP where
the vocabulary or different number of tokens is closed, known and discrete. In this way, we also avoid the
overhead of the operation at inference time.

Finally, for sequence length (M) and slice length (S) we choose two different combinations. The
justification for this decision is that using these two configurations will allow us to compare two models
with a different number of parameters. The first combination is M = 64 and S = 128. This will determine
the input size for the named large or LG architecture. The second one, smaller in number of parameters,
will have M = 24 and S = 64. The name for this architecture is small or SM. These choices for sequence
length and slice length will let us explore the trade-off between having a smaller model that should do
inference faster and a larger one that should be able to get better test accuracy as it has a bigger number
of neurons and learning capacity.

3.3.4 Final architecture

After the hypertuning step we have two final designs for our classification task using the Transformer
encoder block. Both of them uses the same number of Transformer encoder layers. The difference happens
only in the size of the sequence and the tokens as explained in the previous section. As a consequence for
this difference in input size, the LG model will end up having more than 5.2M parameters more than the
SM one.

Input Flatten embeddings
sequence

Token e ~ RelLU LogSoftmax

Token — Add & Norm
2 Token Feed Forward g
S =
8 Token N “(<j = g
® < o (] =
) . — 5 X2 = kS =
3 : z Add & Norm 18 ME 5
= ¢ § 1 ® & <
I . Multi-Head =8| | &
=< : Attention 3

A

Token L

Token _ y S L

2xS Transformer [encoder block

Figure 8: Chosen Transformer-based model architecture. Parameters M, S of the input size will be different for the
two model sizes. For the small architecture (SM), M=24, S=64 and for the large one (LG) M=64 and S=128.

Figure 8 presents the architectural blueprint of our Transformer-based neural networks. The input
comprises a sequential arrangement of contiguous tokens, which undergoes an initial processing in the token
or 2xS dimension through a normalization layer. The reason for this layer is the same as it was in the CNN
model, the change in the dynamic range when a signal goes through channel or noise forces us to add this

22

step. Following this, the normalized 1Q samples vectors enter two Transformer encoder layers. Within each
layer, the tokens undergo multi-head self-attention, accompanied by the inclusion of a residual connection
originating from the pre-attention stage and a subsequent normalization layer. Additionally, the encoder
features a Feed Forward layer, followed by another residual connection and subsequent normalization. This
entire process is repeated twice, after which the resulting embeddings from the Transformer encoder block
are flattened. After this, the output of this block proceeds through a Fully Connected layer with a neuron
count of 2xS, activated by a RelLU function. Here, S corresponds to 128 for the LG model and 64 for
the SM model. Lastly, a dropout layer with a probability of 0.5 is applied, followed by a final output layer
and LogSoftmax activation function. This arrangement generates logarithmic probabilities indicating the
likelihood of the input transmission belonging to a specific protocol.

3.4 Training & Testing

For each architecture selected, namely the CNN-based and the SM and LG Transformer-based architectures,
we will train models in three different settings. For first one, models will be trained in static conditions of
noise (with chosen 10 dBs of SNR) and channel. This means that for this first experiment we will have 12
different models which correspond to the three architectures selected, in each of the four channels available
(counting the absence of one as a possibility) with fixed 10 dBs SNR for all of these trainings.

The second setting will consist on keeping a fixed channel during training time, but augmenting the 1Q
samples with variable levels of noise from -20 dBs to 30 dBs SNR. The specific choice for a training sample
will be picked from a uniform distribution with the SNR limits as the continuous range of options to pick
from. So every time a sample is retrieved from the dataset, a random noise level between those two values
of SNR will be applied to the signal before entering the model. Notice that as mentioned before, -20 dBs
of SNR means that the actual ratio of signal strength to noise strength in this case is 0.01, which means
the signal power is one-hundredth of the noise power. And the other extreme, 30 dBs, represents that the
actual ratio of signal strength to noise strength in this case is 1000, indicating that the signal power is
1000 times stronger than the noise power. So this two scenarios are very different, being the negative side
a harder setting for the model. Also it should be reminded again that the noise applied follows a Gaussian
distribution.

The result of this second experiment will be again 12 trained models, which correspond to the three
architectures trained for each of the specific channels. The difference is that this time the noise will not be
fixed but variable within the mentioned range. It should be remarked how this noise is applied dynamically
to the base signals already generated through MATLAB.

Finally the third experiment consists on presenting the three different types of models with samples from
all the channels and variable noise level during training time. This means that we will have a CNN-based
model, a SM and LG Transformer-based model that will be trained with samples with no channel applied,
Rayleigh, TGn and TGax. In addition, a variable value for the noise also will be applied in the same manner
it was applied in the second setting. These models are expected to generalize better since they have been
trained in the most different number of scenarios.

These three different settings or experiments will allow us to explore how the different architectures
compare between themselves while also assess and evaluate the importance of presenting the model with
as much variety as possible in terms of noise and channel conditions. The reason for this is to obtain
generalized good performance in all the different environments and even new ones that the model has not
seen during training.

Getting now into some technical details for the training that we implemented, for the CNN we have

23

DL for Wireless

used a batch size of 512 tensors of size 2x512. Adam optimizer with /r = 0.001 and 5 epochs as training
time. For the Transformer-based models we use a batch size of 122 tensor of size 64x256 (Mx(2xS)) for
the large architecture and 24x128 in the case of the small one. Also Adam optimizer with 5 epochs of
training time but a /r = 0.0002 as decided in the hypertuning phase. Finally, for all the architectures the
loss function we will use to optimize the model is the negative log likelihood loss or NLLLoss since it is
useful to train a classification problem with C classes.

During training, 20% of the available base Wi-Fi transmissions will be saved for validation purposes.
This validation samples will also be augmented through channel and noise so that the validation accuracy
is a real measure of the overall performance of the model.

The only remaining part of our ML pipeline is testing. For this purpose, we collected a completely
new set of transmissions that were augmented through each of the available channels. This means that
for each collected transmission file of a specific protocol, we will have four versions of the same signal.
One without any channel conditions applied (the base waveform), and three corresponding to each specific
channel condition available. As a result, the size of the testing dataset is four times the original size. Unlike
during training, where channel environments are applied dynamically, for testing, the channel environments
are applied statically. This ensures that the test conditions are equal or at least very similar for all the
models. Therefore, it creates a fair testing environment for the three models.

During the testing phase, we will incorporate noise levels dynamically into the evaluation process. This
approach is chosen to overcome the challenges associated with managing a vast number of files if we were
to save a separate file for each channel and noise level under consideration. By setting a fixed random
seed in our Python script, we also ensure consistent generation of noise across multiple model tests. This
strategy allows us to assess the performance of our models in diverse and noisy environments.

To comprehensively evaluate the performance of our models in terms of classification accuracy, we
will systematically apply predetermined SNR levels ranging from -30 dBs to 30 dBs, with increments of
5 dBs. By analyzing the accuracy achieved at each selected noise level and channel condition, we gain
valuable insights into the model’s performance under specific environment conditions. This meticulous
evaluation process enables us to assess the models’ robustness and reliability across varying noise levels
and environmental conditions and aids in making informed decisions about the suitability of a particular
training setting and architecture for a given deployment.

3.5 Models size comparison

This final subsection of the proposed solution block will give a brief overview on the sizes of the three
different models that we will compare. For instance, Figure 9 portrays a visual representation of the
information that we want to convey. There is clearly one model design dominating in both categories
which is the Transformer-based large architecture. It has 6.8 M parameters and the total number of 1Q
samples needed for an input sequence is 8192, which is the result of having 64 tokens of S = 128. The
second biggest model in number of parameters, with 4.1 M, is the CNN-based. The convolutional block
has an elevated number of kernels which produces that when the flattening step is performed, the number
of parameters increases in a great manner. Despite this, it is also the model that needs the fewest amount
of 1Q samples to predict, with 512 1Q samples. Finally, the SM Transformer is the model with the least
number of parameters, 1.6 M, and the second in IQ samples per input at 1536. The LG model uses 16
times the amount of 1Q samples per input that the CNN uses, while the SM uses only 3 times the number
of IQ samples.

In both of the metrics presented to assess model size we aim at minimizing them. The number of

24

Number of parameters IQ samples per input

Transformer LG

Transformer SM

CNN
| |
6 4 2 0 0 2000 4000 6000 8000
1e6

Figure 9: Comparison in model sizes both in terms of number of parameters of each architecture and number of 1Q
samples needed to do inference over the input.

parameters is a very important factor in wireless deployments since edge devices normally do not count
with specific hardware to store and load ML models. So it is very typical to find a setting in which
memory and computing power is scarce. The biggest the model is, the more memory it needs and the more
computational resources will be needed to perform inference.

The number of IQ samples needed to perform inference is also of high importance since it will limit the
amount of predictions we will be able to make in real time. Ignoring the computational time, if we need
to wait to receive 8192 IQ samples for a single prediction it will take longer than if we need to wait for
only 512. The difference, since we are talking of a wireless transmission, is of the order of ms but it is still
important to keep in mind and optimize. With a model that needs a bigger input we will take longer to
observe a change in the protocol being transmitted just by the fact that we need to wait longer to have a
complete input. But also, with a bigger input is more probable that we make more accurate predictions,
so there is clearly a trade-off that needs to be addressed.

In this comparison the LG Transformer-based architecture is clearly the biggest one. So just in terms
of model size, we would prefer any of the other two models. It needs to be taken into account that model
size is only one of the factors that are important to analyze when selecting a model. In the results section
(4) we will evaluate also inference speed and probably the most determining one when choosing a model
in any problem, that is how well does the model perform for the task that it has been designed for. This
corresponds to classification accuracy in our particular case. And it is common that the correlation between
model size and overall performance is high.

25

DL for Wireless

4. Results

In this section, we will present the results of the three experiments described in 3.4, providing a compre-
hensive evaluation of the performance achieved by the proposed models in those settings. Furthermore,
we will conduct a global comparison of the speed and performance of these different architectures that we
use. To ensure a comprehensive assessment, we will also consider the size comparison discussed in 3.5.

To provide a recap of the upcoming results, we will be showcasing the outcomes of our comparative
analysis involving three architectures: CNN, LG Transformer, and SM Transformer. Each architecture will
be evaluated across three sets of trained models, corresponding to specific experiments. Let's delve into a
summary of the objectives and explanations for each experiment:

(1) First experiment: In this initial experiment, we trained each architecture under a fixed noise and
channel condition. Specifically, we selected a noise level corresponding to an SNR of 10 dBs. For
each of the three neural networks, we generated separate models trained for this constant noise level
and each channel condition, producing a total of four models for each architecture.

(11) Second experiment: The second experiment focuses on training models for a specific channel
condition while varying the noise level. We introduced a range of noise levels, spanning from -20
dBs to 30 dBs. Similar to the first experiment, we generated specific models for each channel
condition; however, this time, the models were trained using samples containing varying levels of
noise.

(1) Third experiment: In the final experiment, we aimed to create models that encompass a broader
range of scenarios. We trained three different models, one for each architecture, using samples
from every channel condition and varying noise levels within the same SNR range as the second
experiment.

In total, we have trained 27 models: 12 models resulting from the first experiment (obtained by
multiplying the number of architectures by the number of channel conditions), 12 models from the second
experiment, and 3 models from the third experiment. The primary objective of these experiments is to
observe the performance variations across different settings and assess the effectiveness of each classifier
type. By analyzing the results, we aim to demonstrate the significance of collecting and showcasing data
from diverse scenarios to achieve robust and generalizable models.

Through this comprehensive evaluation, we expect to gain insights into the strengths and limitations of
each architecture, identify optimal settings for specific conditions, and determine the most suitable classifier
for this particular task. The results will also highlight the importance of training models across a range of
scenarios.

To ensure efficient and organized training, we leveraged the powerful experiment tracking framework
called Weights & Biases. This framework allowed us to record and store detailed information about each
training run. By utilizing the intuitive Workspace provided by Weights & Biases, we gained access to
a range of valuable representations and graphs that facilitated the evaluation of our models based on the
chosen metric, which, in our case, was validation accuracy.

This remarkable tool provided us with an easy way to assess the success of our training runs and
save the obtained results. It eliminated the need to worry about losing any valuable data or manually
recording important metrics. With Weights & Biases, we could effortlessly track the progress of our
models throughout the training process and analyze the performance achieved.

26

During the testing phase, where the actual results are obtained, we ensured that the outcomes were
appropriately saved for further analysis. Specifically, a dedicated file was created to store the results for each
noise level and channel condition, corresponding to each individual model. This allowed us to conveniently
process and analyze the collected data, ensuring accurate reporting of our findings.

4.1 First experiment

To present the results of the first experiment, we will first examine the performance of one architecture
trained for each specific condition, consisting of a particular channel condition and a noise level equivalent
to 10 dBs SNR. We will evaluate how these trained models perform when applied to different channel

conditions. Additionally, we will provide the averaged performance across all channels for the three types
of models in this first experiment.

In order to obtain the averaged results, we calculated the average test accuracy for each noise level
across the four different channel environments. This approach allows us to assess the overall performance
of the models and observe how they handle variations in channel conditions.

Breakdown results by channel: SM Transformer trained for first experiment

No channel applied TGn
100 AmmAm—A——d——A-—d 100 P ot Sor Sog |
II '/
i
/
7 80 / = 80 7
E‘ { E‘ /
@ 60 / @ 60 o CRITRTIECCECI
3 / 3 I
o ! o A ,
< 40 / < 40 P
»Hf_».A;uQHgﬁArﬁhz.v—-'f':’ e o f:dL!EE!—‘J
20 20
-30 -20 -10 0 10 20 30 -30 -20 -10 0 10 20 30
SNR(dBs) SNR(dBs)
TGax Rayleigh
100 P ST T v 100 P SRR
e 7
¥ r
§ 80 /' § 80 I’ p——k——k——k——A
p / — 1 b
oy ! oy el
@ 60 y. o 60 7
2 g 2 %
< 40 f"/*—-b-ﬂ--_‘-_ﬂ’_—‘ < 40 /J/
= - :f:-ﬁ,:éi"(L 74;7:-:.!5:{”‘
20 20
-30 -20 -10 0 10 20 30 -30 -20 -10 0 10 20 30
SNR(dBs) SNR(dBs)
—4- SMTrans. t.f. 10dBs None —-<e- SMTrans. t.f. 10dBs TGn —-#- SMTrans. t.f. 10dBs TGax SM Trans. t.f. 10dBs Rayleigh

Figure 10: Comparison between SM Transformer-based architecture trained for specific channel and noise
conditions. Performance breakdown by channel condition. t.f. stands for trained for

Figure 10 shows us for the SM Transformer-based architecture how performance in terms of classification
accuracy varies when a given model is trained for very specific conditions and then used in very different
ones. We have the four SM models, each trained in a specific channel condition. Except for the model
trained for Rayleigh fading channel, in all the other cases the architecture trained for that channel is the
one that seems to classify the best. It should be pointed out that the models trained for TGn and TGax
channels seem to be highly accurate even in conditions that they have not seen during training. It is also
worth noticing that performance is peaking at 10 dBs SNR, which is the noise level in which the models
have been trained on, even if higher SNR should be easier as it means that the noise level is lower.

27

DL for Wireless

Averaged results comparison: SM, LG and CNN trained for 10 dBs and TGn channel

100 O ————————0————-———-9
901 /:/——-"‘"""_"A___""____'
| _—e
80 " II
i i
= 70 / !
— 1 /
Fry /]
© 601 i 7
3 i /
8 1 /
< 501 a 4/
i 1
/ J
40 -
/z‘ ,/’
e a4 :
,/
20 - ———————— 0—-—“(
=30 -20 -10 0 10 20 30
SNR(dBs)
—-e- LG Trans.t.f.10dBs TGn -#- SMTrans. t.f.10dBs TGn CNN t.f. 10dBs TGn

Figure 11: Average performance for the three NN types considered in the context of the first experiment. Models
presented in this case were trained for TGn channel.

The second graph in this subsection, Figure 11 represents the averaged performance of the different
type of classifiers that we are training and comparing in this thesis. The channel in which these models
were trained is TGn, because as we saw in the previous figure, it seems that showing the models this
channel makes them generalize better. What we can observe is that the LG Transformer-based model is
able to maintain performance even in lower SNR levels, which indicate a higher presence of noise. Despite
that, it does not perform as well as the SM model. Analyzing the individual channel results, we can find
a reason for that. The large architecture seems to be overfitting in some of the higher noise scenarios,
making this model not work as well in the other high noise channel conditions. CNN get similar accuracy as
LG Transformer-based but it is the model which its performance drops the quickest when noise increases.
Finally, it is worth mentioning that in this scenario in which we are not presented with a lot of data variety,
the SM model seems to be the best option, although the LG Transformer-based is showing better endurance
against noisy situations.

These results allow us to check what is the effect of presenting the model with very specific conditions
during training time. As we have been able to observe, the LG architecture happens to overfit in this
scenario since it is too large in terms of parameters, and tends to behave in this way when it is not trained
in sufficiently diverse environments.

4.2 Second experiment

In this second experiment, we will begin by assessing the performance of a single architecture trained across
different channels under varying SNR values. This evaluation will be represented in a graph similar to the
one shown in Figure 10. However, in this case, the results will be specific to the second experiment settings
and will focus on the LG Transformer-based model.

28

Additionally, we will present another plot in this subsection that enables us to compare and analyze the
averaged results of the three architectures trained for a specific channel condition. In this case, we have
selected the TGax channel condition for evaluation. This choice is based on the observation that TGax,
along with TGn, has demonstrated better generalization capabilities, making it a suitable environment for
comparative analysis between the architectures.

Breakdown results by channel: LG Transformer trained for second experiment

No channel applied

100 B S 100 o
..'A .'.~ .."
2 80 = 80
5 A s S
© 60 2 PP PP TR PP CYRRRE ° © 60 .,' =
=} R 4 5 IR
38 A T SR U . 3] R
© - S T o o
< 409 P i < 40 i e e
20 ’'y WezeaQere T 0 : ---- s e aee FRETEY A

-30 -20 -10 0 10 20 30 =30 -20 -10 0 10 20 30
SNR (dBs) SNR (dBs)
TGax Rayleigh
100 P Gt Stil daaet oo L L B L B L DR 100 BT e
[2 . .." -
i
< 80 3 < 80 E—
@ 60 4= @ 60 R
= - 3 o
o K o . -
< 40 Ry 2 40 P
Ao Avere Aveeee Ao Ao A A 3 . | -) Aenee e Aeeren hererckeeeeh
............. AeeAnt
20 P] I
-30 -20 -10 0 10 20 30 -30 -20 -10 0 10 20 30
SNR(dBs) SNR(dBs)
---A-- |G Trans. t.f. range None --#-- |G Trans. t.f.range TGn --#-- |G Trans. t.f. range TGax LG Trans. t.f. range Rayleigh

Figure 12: Channel performance breakdown for LG architecture trained for each of the channels and SNR ranging
from -20 dBs to 30 dBs.

Analyzing Figure 12 in depth, we can make several interesting observations. Firstly, it is evident that
the LG model trained specifically for the no channel condition applied struggles to achieve satisfactory
performance in any of the other channel conditions. Similarly, the other three models also fail to achieve
classification accuracy above 60% for the evaluated noise levels when being tested in the absence of a
channel environment. This phenomenon can be attributed to the significant impact of channel environments
on the shape of the base signals. Not applying any channel, surprisingly, emerges as the most distinct
environment among those being evaluated.

Among all other channel conditions, the model trained for TGn demonstrates the best performance. It
consistently exhibits higher classification accuracy levels for high signal-to-noise ratio (SNR) and maintains
relatively stable performance even as the noise level increases. Notably, the TGn model outperforms the
other models even in conditions for which they were specifically trained. For instance, when tested in the
TGax conditions, the TGn model surpasses the model trained for TGax. Similarly, when evaluated in the
Rayleigh fading channel, the TGn model outperforms the model trained for that particular channel.

These findings highlight the robustness and adaptability of the TGn model, as it consistently performs
well across various channel conditions. It suggests that the TGn model has learned features and pat-
terns that are effective for classification across different environments. On the other hand, the relatively
lower performance of the other models in their respective trained conditions indicates the need for further
exploration and improvement.

29

DL for Wireless

Averaged results comparison: SM, LG and CNN trained for TGax channel

100

90

80 I ------ .
701

60

Accuracy (%)

501
401 s
301 e LJa e

201

-30 -20 -10 0 10 20 30
SNR(dBs)

--#- LG Trans.t.f. TGax --#- SMTrans. t.f. TGax CNN t.f. TGax

Figure 13: Comparison of average performance of the three classifiers trained for TGax channel condition and SNR
in the range -20 to 30 dBs.

Now, let's analyze Figure 13. The first notable observation is that once again, the LG Transformer
architecture demonstrates a higher resilience to noise compared to the SM Transformer-based model and the
CNN-based architecture. This consistent pattern aligns with our findings from the previous experiment.
However, it's important to note that the LG architecture still struggles to achieve optimal performance
in the absence of any channel effects, resulting in a deviation from near 100% accuracy in the average
measurement. As it also happened before, this does not occur to the SM model, which is able to achieve
nearly perfect classification accuracy with high SNR.

Another interesting observation emerges when comparing the CNN line in this figure with the corre-
sponding line in Figure 11. For the CNN model, training it under specific conditions of noise and channel
appears to help improve its accuracy values. However, it is still not able to compete on par with the other
two models in either of the settings. For this second experiment, we can observe that the CNN architecture
is more susceptible to the impact of noise levels, and its accuracy peaks at around 65%.

Furthermore, when comparing the results of this experiment to those of the first experiment, it is
evident that the models are now capable of maintaining performance even under adverse noise conditions.
By training the classifiers with samples that exhibit similar noise levels to those encountered during testing,
the models have shown increased resilience in low SNR conditions.

4.3 Third experiment

In this final experiment, our objective is to evaluate the performance of our classifiers when they have
been trained on all possible conditions encompassing different channel environments and noise levels. We
anticipate that this comprehensive training approach will lead to increased accuracy and demonstrate the
generalization capabilities of our models. To assess this, we will compare the performance of the three

30

models for each channel condition and SNR level under evaluation.

Breakdown results by channel: LG, SM, CNN Transformer trained for all conditions

No channel applied TGn
100+ S gp—te——p—t—h—p— | 100 e
S 807 e 807
7 >
T 601 © 60
=) >
3 8
< 404 < 40+
20+ 20
-30 -20 -10 0 10 20 30 -30 -20 -10 0 10 20 30
SNR(dBs) SNR(dBs)
TGax Rayleigh
100+ d——h———— e 100+ e —
o 80 9 801
B B
o 60 © 601
3 3
3 3
<< 40 << 40+
20+ 201
-30 -20 -10 0 10 20 30 -30 -20 -10 0 10 20 30
SNR (dBs) SNR(dBs)
—#— |G Trans. t.f. all conditions —~— SMTrans. t.f. all conditions CNN t.f. all conditions

Figure 14: Channel performance breakdown for all architecture trained on all of the channels simultaneously and
SNR ranging from -20 dBs to 30 dBs.

The final results of this experiment are presented and summarized in Figure 14. Upon analyzing the
results, it becomes evident that the LG Transformer-based model exhibits superior performance compared
to the other two models. This architecture demonstrates its ability to effectively learn and capture the
intrinsic patterns in the data, regardless of the presence of noise or varying channel conditions.

The SM Transformer-based model secures the second position in terms of classification accuracy. It
achieves near-perfect accuracy for all channel conditions; however, it demonstrates this remarkable per-
formance primarily at higher SNR levels. As the noise level decreases, its accuracy consistently improves,
reaching around 90% accuracy at 0 dB SNR and continuing to increase as the noise level further decreases.

On the other hand, the CNN-based model performs comparatively lower than the other two architec-
tures. It fails to reach the same level of accuracy as the LG and SM Transformer models for all channel
conditions, and specially for both TGn and TGax channel conditions. Moreover, the CNN-based model
struggles the most when confronted with higher noise levels, resulting in reduced prediction accuracy.

These findings highlight the varying strengths and weaknesses of each model type in the context of
our experiments. The LG Transformer model demonstrates robustness and adaptability across different
channel conditions but only when presented with enough data, while the SM Transformer model excels in
achieving high accuracy with lower noise levels and less data, but it is not so robust to noise. However,

the CNN-based model lags behind in terms of performance, particularly when faced with challenging noise
environments.

31

DL for Wireless

4.4 Global comparison

In this final subsection of the results, we will provide a horizontal overview of the obtained results across
the different experiments. Specifically, we will focus on comparing the average accuracy between the two
top-performing architectures, namely the LG and SM Transformer-based models. In the previous Figure we
can see clearly that the CNN model does not keep up in terms of classification accuracy. Additionally, we
will conduct a comprehensive comparison of all architectures using various metrics, including model size,
inference time, and classification accuracy.

Averaged results comparison: SM trained for all experiments

100+

90+

801

70

60

Accuracy (%)

50

407

30

204

-30 -20 -10 0 10 20 30
SNR(dBs)

-#- SMTrans. t.f. 10dBs TGn --® SMTrans. t.f. TGn —#— SMTrans. t.f. all conditions

Figure 15: Comparison in average performance by a SM model belonging to each experiment. For the first two
experiments, we have selected the model trained for TGn channel.

Figure 15 provides a comprehensive overview of the results obtained for the SM Transformer-based
model across the three experiments. It allows us to examine the model's performance in terms of noise
and channel conditions, providing valuable insights into its ability to generalize and adapt.

Looking at the graph, we can observe that the model trained in the third experiment (represented
by the solid line) consistently outperforms the models from the first two experiments. This validates
the hypothesis that exposing the model to a wider range of data, encompassing different noise levels
and channel conditions, enhances its generalization capabilities. The improved performance of the third
experiment model suggests that training with diverse data helps the model better handle the challenges
posed by real-world scenarios.

While the third experiment model excels, it is interesting to note that the model from the second
experiment (represented by the dotted line) is not far behind. This model, trained with variable noise levels
but a specific channel condition, demonstrates good performance across a range of noise levels. Its ability
to adapt to different noise levels during training contributes to its resilience in handling noise variations
during testing. In contrast, the model from the first experiment (represented by the dashed line) exhibits
the lowest performance, indicating that training with a fixed noise level and a single channel condition
limits the model’s ability to generalize effectively.

32

For the first two experiments we have picked the models trained for TGn channel condition. Through-
out the experiments, models trained on the TGn channel environment consistently demonstrate better
generalization compared to other channels. This finding, supported by experimental evaluations, highlights
the significance of selecting appropriate channel conditions during training to improve the model's overall
performance.

Averaged results comparison: LG trained for all experiments

100+ 4 > + > * * * +*
90 — g PTLE stalulubl dulnlsinin sietsinint
80 S
e 704
&
© 60+
3
3
< 501
40+
30+
201
=30 -20 -10 0 10 20 30
SNR(dBs)
-e- |G Trans.t.f.10dBs TGn --@- LGTrans. t.f.TGn —#— LG Trans. t.f. all conditions

Figure 16: Comparison in average performance by a LG model trained in each of the different settings or
experiments. For the first two experiments, we have selected the model trained for TGn channel.

When analyzing Figure 16, we can observe similar trends to the previous graph, but with some notable
differences. In this case, the model trained in the third experiment (represented by the solid line) shows
a more significant deviation from the models trained in the first two experiments. While the first two
experiments yield models that reach a maximum accuracy of around 90%, the model trained with all
conditions achieves nearly perfect classification accuracy. This suggests that augmenting the dataset with
noise and different conditions has a significant impact on the model’s ability to handle and classify signals
in all environments.

Interestingly, the lines representing the models trained in the last two experiments, which were exposed
to varying noise levels, exhibit closer proximity to each other for lower SNR values. This implies that
training with varying noise levels helps the models better adapt to and classify signals in challenging noise
conditions. Moreover, the model trained in the third experiment, which experienced all conditions during
training, consistently outperforms the other models across all SNR levels.

It is important to note that the LG Transformer-based model does not achieve perfect classification
accuracy in the first two experiments. This suggests that the model may be overfitting to the training data
and failing to learn generalized features that can effectively identify different protocols under all conditions.
This discrepancy highlights the importance of carefully selecting training strategies and ensuring models
are capable of capturing and generalizing relevant signal patterns.

We have seen how the models trained for all conditions continue to outperform the models trained in

33

DL for Wireless

Inference time comparison

©
g

©
fop)

©
ol

o o
N W

Mean inference time (ms)
o
I~

o
.

0.0

Transformer LG Transformer SM CNN

Figure 17: Comparison between models in terms of inference time. Time unit is milliseconds.

more specific environments, even in the conditions that those models were trained on. Now, if we look
at Figure 17, we can observe the difference in inference time for each of the architectures trained. The
inference times were measured using an NVIDIA GPU, starting with a warm-up phase and then performing
300 repetitions of the inference process to obtain precise timings.

According to the results, the CNN-based model demonstrates the fastest inference time, with a differ-
ence of more than 0.1 ms compared to the other architectures. This indicates that the CNN architecture
is efficient in terms of computational speed, making it a favorable choice for applications that require
real-time or low-latency processing.

On the other hand, both Transformer-based architectures, despite having a significant difference in the
number of parameters, exhibit similar inference times. Both models have an average inference time slightly
above 0.7 ms, with the smaller version of the Transformer showing slightly faster inference speed. This
suggests that the Transformer architectures may introduce additional computational overhead due to their
complex architecture and attention mechanisms.

In summary, Figure 17 highlights the trade-off between model architecture and inference time. The
CNN-based model offers the fastest inference speed, making it suitable for applications where real-time
processing is crucial. Meanwhile, the Transformer-based models, although slower in inference, provide the
advantage of capturing long-range dependencies and context in the data, which can be beneficial for tasks
that require a deeper understanding of the input or more precise output.

When examining Table 3, we can gain further insights into the performance of the different architectures
across various metrics. The table provides accuracy measurements at three different SNR levels (-10 dBs,
0 dBs, and 10 dBs), as well as other metrics related to model size and speed.

In terms of classification accuracy, the LG Transformer-based architecture emerges as the clear winner,
demonstrating superior performance across all SNR levels. The other Transformer-based architecture also

34

Architecture Num. IQ samples | Inference Accuracy | Accuracy | Accuracy
type params | / input time (ms) | at -10 | at 0 dBs | at 10 dBs
dBs

CNN 4.1M 512 0.5533 £ | 33.22% 59.58% 90.09%
0.04357

SM Transformer | 1.6M 1536 0.7219 + | 49.91% 93.48% 99.17%
0.00145

LG Transformer | 6.8M 8192 0.7523 + | 97.93% 99.97% 99.98%
0.00116

Table 3: Summary of models analyzed. We are considering the models trained for the last experiment, namely
trained for multiple channel and noise conditions.

performs well in terms of accuracy, particularly at higher SNR levels. However, it is important to note that
the CNN model sacrifices accuracy to some extent, as it achieves much lower accuracy values compared
to the Transformer-based models.

Considering model size, the SM Transformer-based architecture stands out with the smallest number
of parameters. It has approximately 2.5 million fewer parameters compared to the CNN model and 5.2
million fewer parameters compared to the LG Transformer model. This reduced parameter count can be
advantageous when deploying the model on devices with limited memory or storage capacity, such as edge
devices.

When evaluating inference speed, the CNN model proves to be the most efficient. It requires fewer
IQ samples for inference, with a factor of 3 fewer samples compared to the SM Transformer model and
16 fewer samples compared to the LG Transformer model. Additionally, the CNN model demonstrates the
quickest inference time, surpassing the other architectures by more than 0.1 ms.

35

DL for Wireless

5. Conclusions and Future Work

In terms of efficiency, the baseline CNN model is still a top contender, showcasing remarkable sample
efficiency and inference speed. However, it is important to note that this efficiency comes at the expense
of highly reduced accuracy compared to the Transformer-based architectures. As we were able to see
in the third experiment, the generalization capacity of this type of NN is not at the same level as the
Transformer-based models.

Ultimately, the selection of the most suitable architecture depends on the specific requirements of the
application at hand and the available deployment resources. If accuracy is of paramount importance, the
LG Transformer model is the most reliable choice. For scenarios where limited model size is crucial, the SM
Transformer model provides a more space-efficient solution. On the other hand, if sample efficiency and
rapid inference are top priorities, the CNN model offers a compelling option. It is essential to strike a balance
between these factors to ensure optimal performance and resource utilization in real-world applications.

Indeed, our designed solution, whether it be the SM or LG Transformer-based models, has demonstrated
superior performance compared to the baseline model that has been prevalent in wireless applications over
the past years. These newer architectures have showcased their usefulness even in limited capacity scenarios,
as exemplified by the SM model. Both models achieved remarkable accuracy, nearing perfection, when
trained under various conditions and for high Signal-to-Noise Ratio (SNR). Additionally, they performed
exceptionally well even in the presence of high noise, as evidenced by the LG model achieving a performance
of nearly 97.93% at -10 dB SNR.

We also conducted an analysis to examine the impact of three common channel models on base signals,
highlighting the significant challenge they pose to waveform classification due to the complete alteration
of wireless signal shape and dynamic range. Throughout the course of our experiments, we progressively
augmented the training dataset with additional scenarios, allowing us to observe how the models gradually
learned to extract intrinsic patterns specific to each protocol, while remaining invariant to channel and
noise variations. This was particularly evident as the models encountered more diverse and challenging
samples.

It is worth noting that our LG Transformer-based model successfully met all defined project spec-
ifications. It maintained an inference time under 1 ms, utilized 6.8 million parameters, achieved high
classification accuracy at low SNR levels, and near-perfect accuracy at high SNR levels. Furthermore,
it demonstrated consistent performance across different channel conditions, despite exclusively relying on
synthetic data augmented during the training process. The SM version also fulfilled all specifications, with
the exception of achieving high accuracy at low SNR levels, as its performance declined more rapidly with
increasing noise levels.

In summary, we have been able to see a comprehensive comparison of the different architectures based
on accuracy, model size, and speed. The LG Transformer model excels in terms of accuracy, while the SM
Transformer model offers a more compact model size. The CNN model showcases the best properties in
terms of sample efficiency and inference speed, although with a trade-off of reduced accuracy compared
to the Transformer-based architectures. The choice of architecture depends on the specific requirements
of the application and the available resources for deployment. However, it is fair to claim that the atten-
tion mechanism employed in Transformer-based models plays a pivotal role in significantly improving the
performance of our classifiers. This mechanism allows the models to effectively model relationships and
dependencies between different elements of our input sequences. As a result, Transformer architectures
have demonstrated superior performance, surpassing very established architectures such as CNNs.

36

5.1 Future Work

The results and models presented in this thesis were obtained using synthetic data generated through
MATLAB and augmented in Python. The next crucial step is to evaluate the performance of the trained
classifiers using real over-the-air (OTA) data. This evaluation will provide valuable insights into how well
the models generalize to real-world scenarios. Fine-tuning approaches can be employed to further enhance
performance in specific scenarios, reducing the need for extensive collection of OTA data, which can be
expensive and time-consuming compared to simulating Wi-Fi transmissions.

Another interesting next step, would be to enable real-time inference. To do so, a comprehensive
pipeline needs to be implemented. This involves collecting IQ samples using a receiver antenna, recording an
adequate amount of data for the model to perform inference, and obtaining predictions for the transmitted
signal. This real-time inference capability would be essential for practical deployment of the waveform
classification system. Also, a graphical interface to visualize the predictions could be implemented. The
way in this could be done is included into the Appendix A.

Another compelling research direction is to assess how the trained classifiers perform in the presence of
overlapping protocols. This can be accomplished by utilizing one of the pretrained classifiers with a modified
output layer that employs a Sigmoid activation function per output neuron instead of a LogSoftmax. This
modification allows for independent probabilistic predictions for each protocol, enabling the identification
of multiple simultaneous transmissions.

In addition, given the significant impact of attention mechanisms and Transformer models on the
classifiers performance, it would be intriguing to visualize the effect of the Transformer model by examining
the interactions between keys and queries in the attention operation. This visualization could provide
valuable insights into which parts of the waveform are given more importance and play a crucial role in
selecting the transmitted protocol. This interpretability can enhance the security and trustworthiness of the
machine learning approach, not only in wireless communications but also in various other domains where
this property is desired.

This project, focused on waveform classification using deep neural networks, serves as an exemplar of
how machine learning modules can be seamlessly integrated into wireless communications applications to
provide real-time or near-real-time services, such as protocol identification. It showcases the potential of
machine learning techniques to enhance and extend the capabilities of traditional wireless communication
systems, opening doors to a wide range of innovative applications in the field.

37

DL for Wireless

Biblography

References

[1]
2]

[3]

[4]

[5]

[6]
[7]

[8]

[9]

[10]

[11]

[12]

[13]

38

Wikipedia: Rayleigh fading, Aug 2022.

Ahmed Alkhateeb, Sam Alex, Paul Varkey, Ying Li, Qi Qu, and Djordje Tujkovic. Deep learning
coordinated beamforming for highly-mobile millimeter wave systems. [EEE Access, 6:37328-37348,
2018.

Daoud Burghal, Ashwin T. Ravi, Varun Rao, Abdullah A. Alghafis, and Andreas F. Molisch. A
comprehensive survey of machine learning based localization with wireless signals, 2020.

Jingjing Cai, Fengming Gan, Xianghai Cao, and Wei Liu. Signal modulation classification based on the
transformer network. IEEE Transactions on Cognitive Communications and Networking, 8(3):1348-
1357, 2022.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale. CoRR,
abs/2010.11929, 2020.

Vinko Erceg. IEEE P802.11 Wireless LANs TGn Channel Models. 2004.

Janne M. J. Huttunen, Dani Korpi, and Mikko Honkala. DeepTx: Deep learning beamforming with
channel prediction, 2022.

J.P. Kermoal, L. Schumacher, K.I. Pedersen, P.E. Mogensen, and F. Frederiksen. A stochastic MIMO
radio channel model with experimental validation. IEEE Journal on Selected Areas in Communications,
20(6):1211-1226, 2002.

Fan Meng, Peng Chen, Lenan Wu, and Xianbin Wang. Automatic modulation classification: A deep
learning enabled approach. IEEE Transactions on Vehicular Technology, 67(11):10760-10772, 2018.

Debashri Roy, Tathagata Mukherjee, Mainak Chatterjee, and Eduardo Pasiliao. Detection of rogue RF
transmitters using generative adversarial nets. In 2019 IEEE Wireless Communications and Networking
Conference (WCNC), pages 1-7, 20109.

Kunal Sankhe, Mauro Belgiovine, Fan Zhou, Shamnaz Riyaz, Stratis loannidis, and Kaushik Chowd-
hury. ORACLE: Optimized Radio clAssification through Convolutional neural nEtworks, 2018.

Nasim Soltani, Debashri Roy, and Kaushik Chowdhury. PRONTO: Preamble overhead reduction with
neural networks for coarse synchronization. [EEE Transactions on Wireless Communications, pages
1-1, 2023.

Jiyun Tao, Jienan Chen, Jing Xing, Shengli Fu, and Junfei Xie. Autoencoder Neural Network Based
Intelligent Hybrid Beamforming Design for mmWave Massive MIMO Systems. |EEE Transactions on
Cognitive Communications and Networking, 6(3):1019-1030, 2020.

[14] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and lllia Polosukhin. Attention is all you need. 2017.

[15] Qingyang Wu, Carlos Feres, Daniel Kuzmenko, Zhi Ding, Zhou Yu, Xin Liu, and Xiaoguang Liu. Deep

learning based RF fingerprinting for device identification and wireless security. Electronics Letters, 54,
12 2018.

[16] Ke Yang, Sixian Wang, Jincheng Dai, Kailin Tan, Kai Niu, and Ping Zhang. WITT: A Wireless Image
Transmission Transformer for Semantic Communications. In ICASSP 2023 - 2023 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 1-5, 2023.

39

DL for Wireless

Appendix

40

A. Streamlit Demo

To facilitate real-time inference of a trained and deployed model, we developed a user-friendly Graphical
User Interface (GUI). This intuitive display offers a dual functionality, providing immediate visibility of
the current identified protocol while also presenting a historical perspective with the last 300 predictions.
By offering this comprehensive view of the model’'s performance over time, users can effectively evaluate
classifier performance, track trends, and gain valuable insights into the classification process. The GUI
serves as a powerful tool for assessing and monitoring the model’s classification capabilities in real-world
scenarios.

As previously described, the GUI comprises two distinct components. The first component prominently
displays the latest model prediction, utilizing a color box and corresponding letter to indicate the identified
protocol for the input 1Q samples. This functionality, illustrated in Figure 18, is accompanied by a concise
explanation and a legend that establishes the color-protocol mapping. The enlarged size of the color box
and letter for the current prediction serves to capture the user's attention, emphasizing the real-time aspect
of the prediction and enhancing its visibility for improved user experience.

Transmitted protocol display

In this dashboard, we will display the result of the real time classification from our ML module. This will be detecting the protocol being transmitted among the following classes: 802_11ax, 802_11b, 802_11n, 802_11g,

Protocols

802_l1ax - AX 802_11b-B 802_11n-N 802_11g-G

Real time prediction

Figure 18: The first part of the inference Graphical User Interface (GUI) includes a concise dashboard explanation,
a legend associating protocols with colors, and a prominent display of the latest model prediction for real-time
feedback.

The second component of the GUI is the historical view of the last 300 predictions, represented as a
timeline. Each slice on the vertical axis represents a protocol, indicated by its specific color. The horizontal
axis represents time, with older predictions on the left and newer predictions on the right. As the model
continues to make predictions, the timeline moves to the left, removing the oldest predicted protocols.
Figure 19 provides an example of this visualization, demonstrating how the timeline dynamically updates
as new predictions are made.

Furthermore, it is noteworthy to mention that the chosen color palette in the GUI is designed to
be colorblind friendly, ensuring accessibility for individuals with color vision impairments. By adopting a

41

DL for Wireless

Prediction history

Time

Figure 19: The second part of the GUI features a prediction history visualization, consisting of a colored line graph
that represents the model’s last three hundred predictions. This visual representation allows users to track the
patterns and evolution of the model’s predictions over time.

color scheme that accommodates diverse visual abilities, the visualization of colors remains inclusive and
understandable to all public.

42

