

Neural Point Processes for Pixel-wise Regression

Chengzhi Shi, Gözde Özcan, Miquel Sirera Perelló, Yuanyuan Li, Nina Iftikhar Shamsi, Stratis Ioannidis **Northeastern University**, Boston, MA, USA

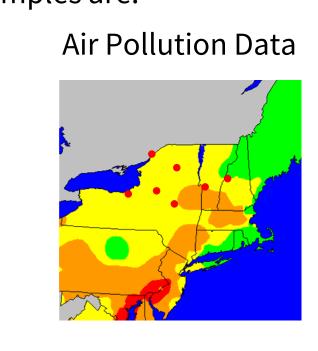
Motivation

→ Many real-world tasks only provide labels at a small subset of pixels. Some examples are:

Medical Imaging

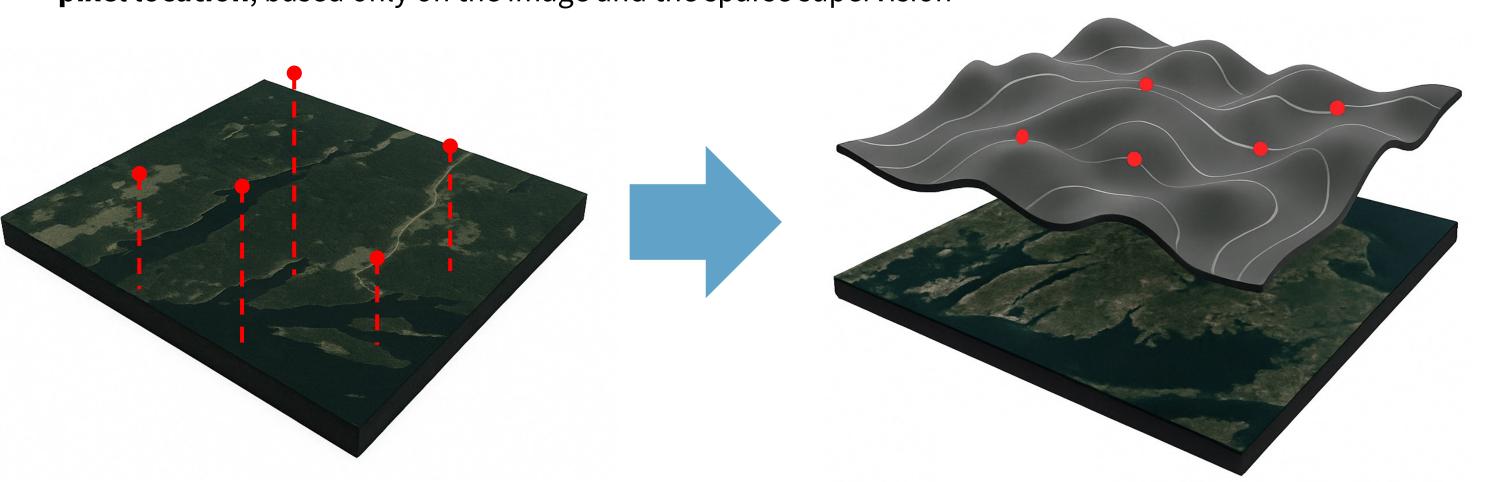
Thorax Boutine (Adult)
Thorax 5.0 B70f

SIEMENS Sensation 64
22-October-2020 14:04:47



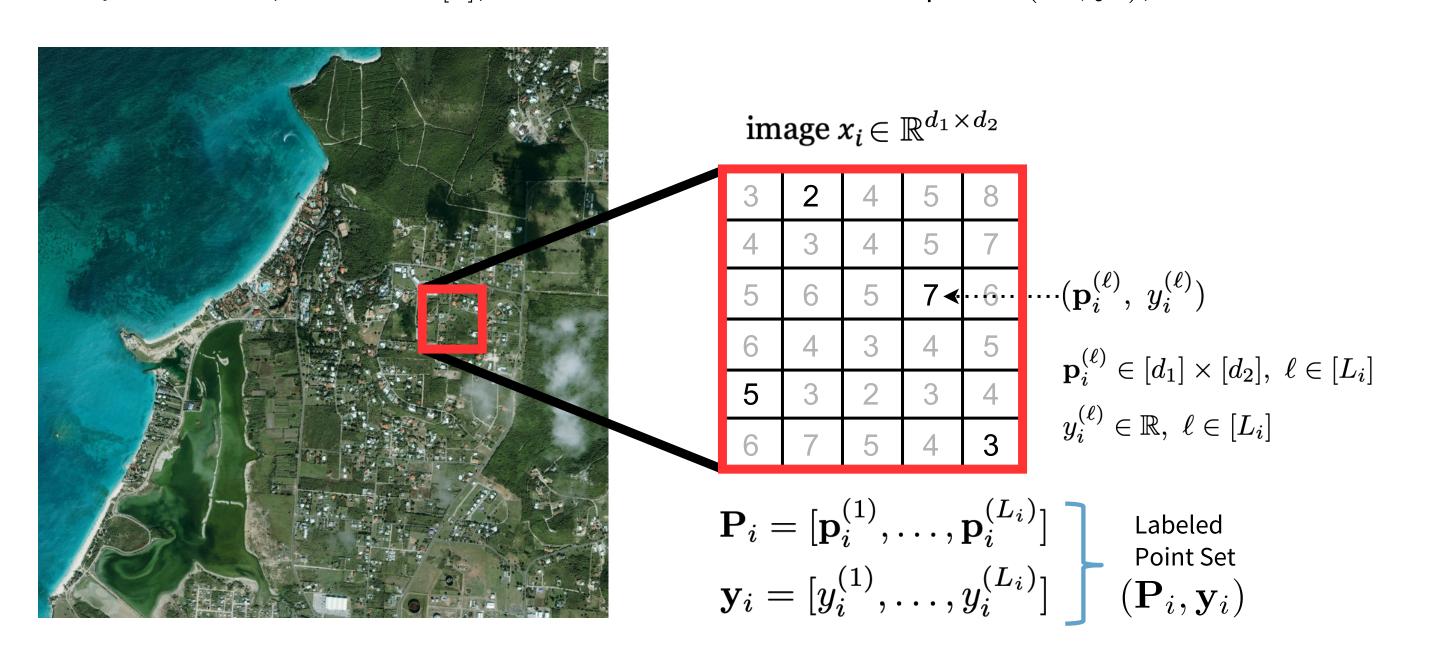
Challenge: how to generalize from sparse supervision?

The **goal** is **pixel-wise regression**: to learn a model that predicts the continuous label value at **every pixel location**, based only on the image and the sparse supervision



Problem Formulation

igsim Let the **dataset** $\mathcal{D}=\{(\mathbf{x}_i,\mathbf{P}_i,\mathbf{y}_i)\}_{i=1}^n$ be defined such that each sample consists of an image $\mathbf{x}_i\in\mathbb{R}^{d_1 imes d_2}$, where $i\in[n]$, and an associated set of labeled points $(\mathbf{P}_i,\mathbf{y}_i)$, detailed below:



- ightharpoonup We fit a neural network (NN) $f(\mathbf{x};\theta) \in \mathbb{R}^{d_1 \times d_2}$, parametrized by $\theta \in \mathbb{R}^{m_{\theta}}$, that takes an input image and predicts values at all *possible pixel locations* $\mathbf{p} \in [d_1] \times [d_2]$
- → Base approach: minimize the Euclidean error only at labeled points

$$\mathcal{L}_{\texttt{MSE}}(\boldsymbol{\theta}, \mathcal{D}) = \sum_{i=1}^{n} \sum_{\ell=1}^{L_i} \left(f_{p_i^{(\ell)}}(\mathbf{x}_i; \boldsymbol{\theta}) - y_i^{(\ell)} \right)^2 = \sum_{i=1}^{n} \left\| f_{\mathbf{P}_i}(\mathbf{x}_i; \boldsymbol{\theta}) - \mathbf{y}_i \right\|_2^2$$

Problem: Ignores spatial relationships between nearby pixels

Acknowledgement

Research was sponsored by the United States Army Core of Engineers (USACE) Engineer Research and Development Center (ERDC) Geospatial Research Laboratory (GRL) and was accomplished under Cooperative Agreement Federal Award Identification Number (FAIN) W9132V-22-2-0001. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of USACE EDRC GRL or the U.S. Government. The U.S. Government is authorized to reproduce and distribute reprints for Government purposes notwithstanding any copyright notation herein.

Our Method: Neural Point Processes (NPPs)

Bringing structure to sparse pixel-wise regression

→ <u>NPP approach</u>: we introduce spatial correlations by modeling labels are modeled as a Gaussian Process (GP) over the DNN output

• We assume that for every point \mathbf{p}_i , the corresponding label y_i is given by:

$$y_i = g_i(\mathbf{p}_i) + \varepsilon$$

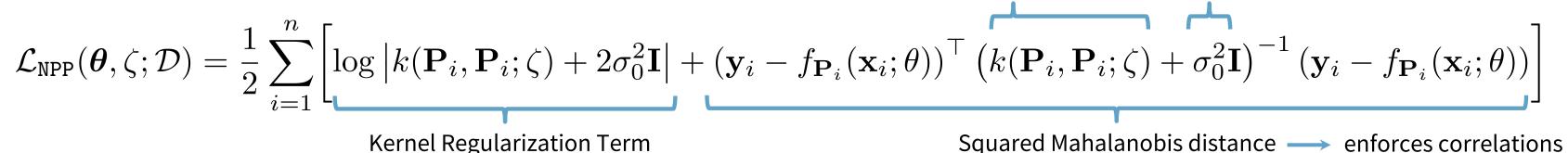
where $\varepsilon \sim N(0, \sigma_0^2)$ is i.i.d noise, and $g_i(\cdot)$ is a GP:

$$g_i(\cdot) \sim \mathcal{GP}(m_i(\cdot), k_i(\cdot, \cdot))$$

with mean function $m_i(\mathbf{p})=f_{\mathbf{p}}(\mathbf{x}_i;\theta)\in\mathbb{R}$ (output of the NN) and kernel function $k_i(\mathbf{p},\mathbf{p}')=k(\mathbf{p},\mathbf{p}';\zeta_i)$ (parametric PSD kernel)

The NPP method:

- Encourage Smoothness
- Accounts for proximity
- \rightarrow With this setup, we can obtain our MLE of θ by minimizing:



Key insight: since **NPPs** model outputs as a **Gaussian Process**, we enable **test-time updates**

between the values of points that are proximal

A quick note on complexity

Our method's complexity

will scale with the number of

labeled points, not with the

image size! $(L \ll d_1 \times d_2)$

Decoder

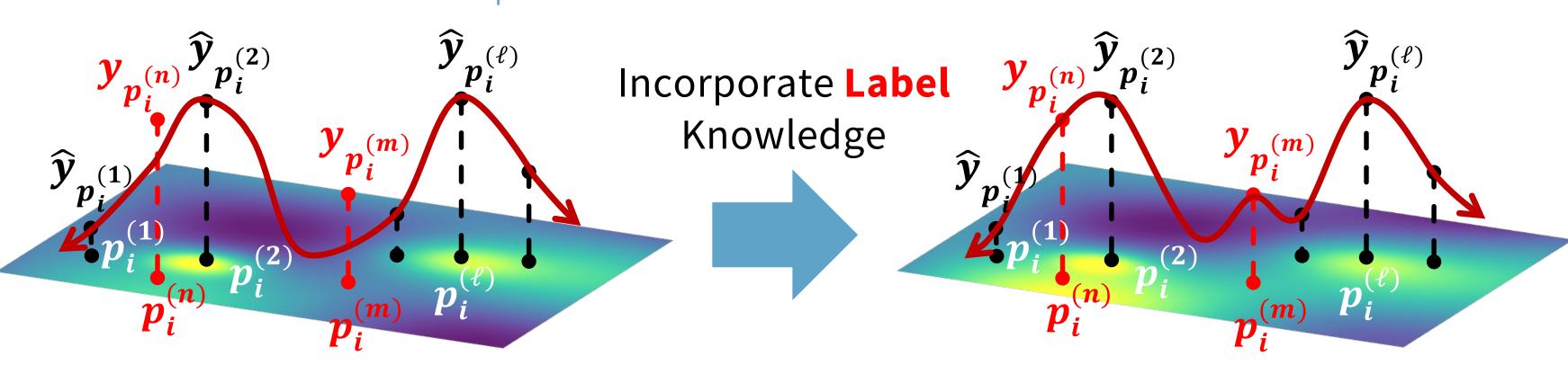
Encoder

- ightharpoonup When partial labels $(\mathbf{P}^{\dagger}, \mathbf{Y}^{\dagger})$ are available, we can compute the **posterior distribution** over predictions for the rest of the points we want to predict, namely $(\mathbf{P}^*, \mathbf{Y}^*)$
- ullet Conditioned on observations ${f Y}^\dagger$, the posterior distribution of ${f Y}^*$ is Gaussian with the following mean and covariance:

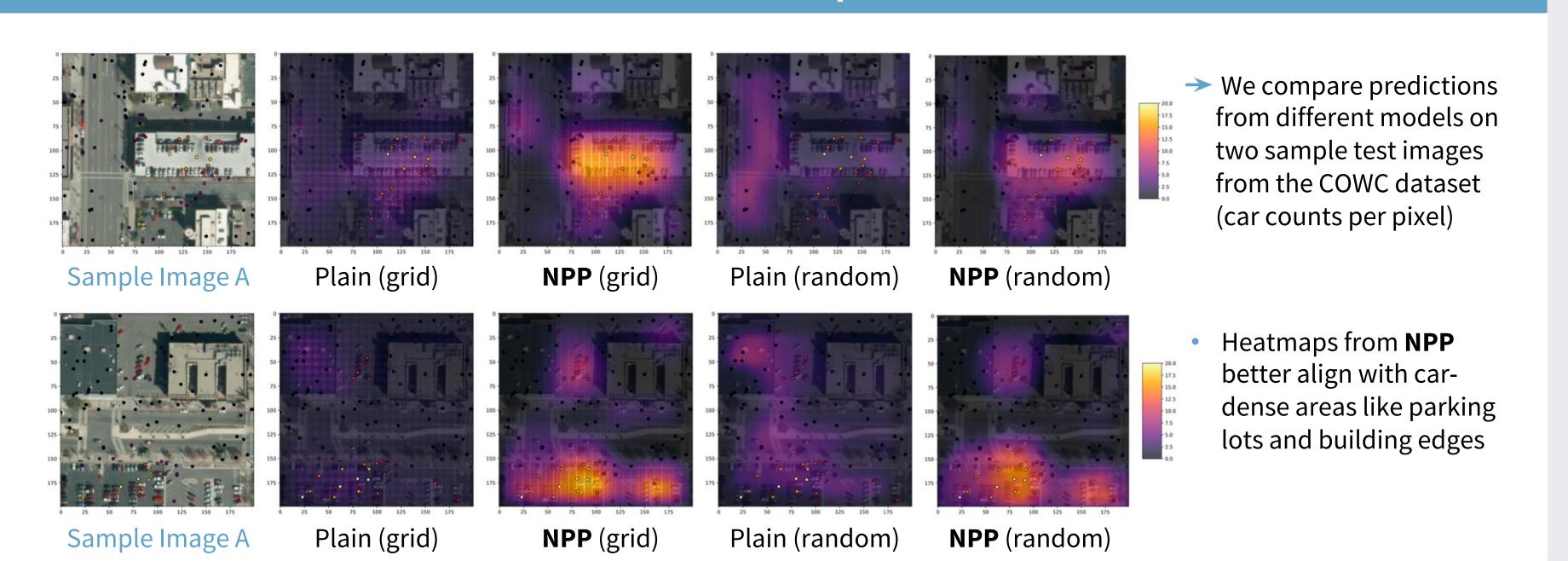
$$\mathbb{E}[\mathbf{Y}^*|\mathbf{Y}^{\dagger}] = m(\mathbf{P}^*) + k(\mathbf{P}^*,\mathbf{P}^{\dagger})\mathbf{K}_{\dagger,\dagger}^{-1}(\mathbf{y}^{\dagger} - m(\mathbf{P}^{\dagger}))$$
$$\operatorname{cov}(\mathbf{Y}^*) = k(\mathbf{P}^*,\mathbf{P}^*) - k(\mathbf{P}^*,\mathbf{P}^{\dagger})\mathbf{K}_{\dagger,\dagger}^{-1}k(\mathbf{P}^{\dagger},\mathbf{P}^*)$$

where $\mathbf{K}_{\dagger,\dagger} \equiv k(\mathbf{P}^{\dagger},\mathbf{P}^{\dagger}) + \sigma_0^2 \mathbf{I}$

- This provides **refined estimates** and quantifies **uncertainty** a full **Bayesian posterior**
- Check our Partial Label Revelation Experiments in the results



A Visual Comparison



Experiments

Baselines Compared

• **Plain**: Standard MSE-trained network

- NP (Neural Processes) [Garnelo et al., 2018]
 ConvNP (Convolutional Neural Processes)
 [Gordon et al., 2020]
- NPP (Ours): Gaussian Process regularized training
 NPP-GP (Ours): NPP + posterior update with partial labels

<u>Architectures</u> (Plain, NPP, NPP-GP methods)

• **AE** (Autoencoder)

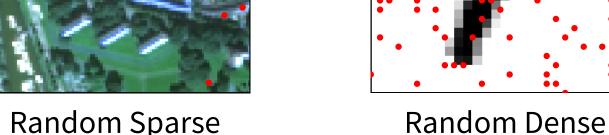
DDPM + AE (Denoising Diffusion Probabilistic Model + AE)

<u>Kernel Strategies</u> (NPP, NPP-GP methods)

Static: Fixed kernel (e.g., RBF), tuned via validation
Learnable: Kernel params optimized during training
Context-aware: parameters regressed from the input

Dataset	Point Distribution	# Samples	Width x Height	# Labels Sparse	# Labels Dense
Synthotic Hootmans	grid	1000	28 x 28	9	100
Synthetic Heatmaps	random	1000	28 x 28	10	100
Point MNIST	grid	1000	28 x 28	9	100
	random	1000	28 x 28	10	100
Dottordom	grid	1000	100 x 100	16	121
Rotterdam	random	1000	100 x 100	10	100
COWC	grid	1000	200 x 200	81	529
	random	1000	200 x 200	100	500

Rotterdam



Synthetic Heatmaps

. .

Grid Sparse Grid Dense

Results

<u>Metrics</u>

- **MSE** ↓: Measures the average squared difference between predicted and true value
- R² ↑: Measures how well predictions explain the variance in the true data

Point MNIS

NPPs consistently outperform standard MSE baselines, NP, and ConvNP, especially in sparse label settings and when partial labels are available at inference time — a setup we refer to as *partial label revelation*, where some ground truth labels are revealed during inference to improve prediction accuracy across methods

	Datasets		Rotterdam				COWC				Partial
	Po	Point pattern		Grid		Random		Grid		dom	label revelation
Real-world	Metric		MSE ↓	$R^2 \uparrow$	MSE↓	$R^2 \uparrow$	MSE ↓	$R^2 \uparrow$	MSE ↓	$R^2 \uparrow$	
	Sparse -	Plain	1.79	-0.058	1.14	0.297	17.99	0.060	17.7	0.078	×
		NPP (ours)	1.76	-0.046	0.834	0.437	4.89	$\boldsymbol{0.767}$	7.77	$\boldsymbol{0.594}$	
		NPP-GP (ours)	1.76	-0.046	0.833	0.437	4.86	0.769	7.65	0.600	
		NP	1.44	0.047	1.64	-0.027	14.0	0.263	15.9	0.171	✓
		ConvNP	0.725	-4.44	1.12	-8.10	16.6	-0.529	5.68	0.768	
	Danga	Plain	1.55	0.100	0.486	0.678	10.9	0.432	14.51	0.208	X
		NPP (ours)	1.25	0.286	0.453	0.700	5.67	0.704	5.31	0.710	
	Dense	NPP-GP (ours)	1.25	0.287	0.443	0.707	5.60	0.706	5.02	0.726	
		NP	1.20	0.196	1.199	0.197	17.9	0.066	13.2	0.272	✓
		ConvNP	0.581	-7.27	0.344	0.379	19.7	-3.12	3.47	$\boldsymbol{0.922}$	
Synthetic	Datasets		PMNIST			Synthetic Heatmaps			Partial		
	Po	Point pattern		Grid		Random		Grid		dom	label revelation
	Metric		MSE ↓	$R^2 \uparrow$	MSE ↓	$R^2 \uparrow$	MSE ↓	$R^2 \uparrow$	MSE ↓	$R^2 \uparrow$	
	Sparse -	Plain	67.5	0.087	0.456	0.992	1298	-15.0	14192	-173	×
		NPP (ours)	72.0	0.026	0.451	0.993	94.6	-0.164	27 .1	0.666	
		NPP-GP (ours)	56.3	0.239	0.451	0.993	75.2	0.075	27.5	0.661	
		NP	78.2	-0.072	44.8	0.404	111	-0.381	104	-0.587	✓
		ConvNP	63.2	-19.4	29.7	0.293	79.8	-5.28	12.1	0.761	
	Dense -	Plain	0.467	0.994	0.181	0.998	104	-0.28	27.1	0.666	V
		NPP (ours)	0.307	0.996	0.128	0.998	94.6	-0.164	26.9	0.669	X
		NPP-GP (ours)	0.300	0.996	0.120	0.999	74.71	0.081	26.9	0.669	
		NP	64.6	0.121	27.2	0.627	59.2	0.269	43.2	0.467	✓
		ConvNP	12.7	0.765	10.0	0.861	24.9	0.246	19.1	0.727	

Partial Label Revelation Experiments: We evaluate model performance when a few point labels are revealed at inference time, enabling refined predictions

