
!!
(ℓ)!!(%)

!"!!(ℓ)!"!!(%)

!"!!(&)
Incorporate Label

Knowledge

"!!(')

!!(&)
!!(')

!!
(()

"!!(()

!!
(ℓ)!!

(%)

!"!!(ℓ)!"!!(%)"!!(')

!!
(&)

!!
(')

!!
(()

"!!(()!"!!(&)

Neural Point Processes for Pixel-wise Regression
Chengzhi Shi, Gözde Özcan, Miquel Sirera Perelló, Yuanyuan Li, Nina Iftikhar Shamsi, Stratis Ioannidis

Northeastern University, Boston, MA, USA

Motivation Our Method: Neural Point Processes (NPPs)

Decoder

!!
(ℓ)

!!
(%)

!"!!(ℓ)
!"!!(%)!"!!(&)

Encoder

!!(&)

Results

A Visual Comparison
<latexit sha1_base64="5jrJG45iqwQdMb6FoB6oKPpNYfE=">AAADCHicjVJLaxRBEO4ZX3F8beJRkMZF2QVddhaJAQkEH+AhwopuEtjeHXp6e3ab9DyYrhGHTh+9+Fe8eFDEqz/Bm//G7s1E4iYHC5r+quqr+qofcSGFgn7/t+dfuHjp8pW1q8G16zdu3mqtb+ypvCoZH7Fc5uVBTBWXIuMjECD5QVFymsaS78eHz11+/z0vlcizd1AXfJLSeSYSwSjYULTu3Q1ISmHBqNS7JtJLB0C/fvvSmA6JczlTdWo3TWDBgZqH+C//heni4ME2JqpKIy22QzPNGodwKZ2vdyNhMJE8gQ5OIl1EYqo7Ltt17V2nONEfTCSe4nPEuvgRrk+VYFKK+QK60wFelXUS5MhpnHQd2q7/qXFCqi2p0SBH0WA6CKJWu9/rLw2fBWED2qixYdT6RWY5q1KeAZNUqXHYL2CiaQmCSW4CUileUHZI53xsYUZTriZ6+ZAG37eRGU7y0q4M8DJ6ukLTVLnpLdNNrFZzLnheblxBsjXRIisq4Bk7FkoqiSHH7lfgmSg5A1lbQFkp7KyYLWhJGdi/4y4hXD3yWbA36IWbvc03j9s7z5rrWEN30D3UQSF6gnbQKzREI8S8j95n76v3zf/kf/G/+z+Oqb7X1NxG/5j/8w8E5ffP</latexit>

LMSE(ω,D) =
n∑

i=1

Li∑

ω=1

(
f
p(ω)
i
(xi;ω)→ y(ω)i

)2
=

n∑

i=1

↑fPi(xi;ω)→ yi↑22

Challenge: how to generalize from sparse supervision?

 Many real-world tasks only provide labels at a small subset of pixels. Some examples are:

 The goal is pixel-wise regression: to learn a model that predicts the continuous label value at every
pixel location, based only on the image and the sparse supervision

Bringing structure to sparse pixel-wise regression

Base approach: minimize the Euclidean error only at labeled points

Problem: Ignores spatial relationships between nearby pixels

Overview of NPP NPP approach: we introduce spatial correlations by modeling labels
are modeled as a Gaussian Process (GP) over the DNN output

• We assume that for every point , the corresponding label
is given by:

 where is i.i.d noise, and is a GP:

• Encourage Smoothness • Accounts for proximity

Key insight: since NPPs model outputs as a Gaussian Process, we enable test-time updates

The NPP method:

<latexit sha1_base64="8VIjfqMulpwg+r5PrrYqTTCtK+Y=">AAADmnicpVLbitNAGJ4mHtZ42K5eeKEXg0Vp2d2SFFmFpbCsoi6KVNgTdNowmU7SoZMDMxOxjvNOPot3vo2TNJR1V0Twh2T+4/cf+KKCM6l8/2fLca9dv3Fz45Z3+87de5vtrfunMi8FoSck57k4j7CknGX0RDHF6XkhKE4jTs+ixasqfvaZCsny7FgtCzpJcZKxmBGsrCvcan33UIrVnGCuP5hQ14ZS+uNoZEwXRTmfyWVqH43UnCpsdiD6at99uC57bXrQezaEKBaY6MDogYFIlmmo2TAwU51ZM2JJwsfQg1YQzxP7o7H6BhfdGiaK9ciEbAdetPZXnXpwGw6QZEmKQ386WKccWVjBkrlF2V7BddexpS2HuzBu9mkAzbrZlxV8vVGvgelNkcoL6DVQ/zjZ3wbrTfVuYNaI/zWcRaluKCZe2O74fb8WeFUJGqUDGhmF7R9olpMypZkiHEs5DvxCTTQWihFOjYdKSQtMFjihY6tmOKVyomtqGfjUemYwzoX9MgVr78UKjVNZEcRmVuPLy7HK+afYuFTxy4lmWVEqmpFVo7jkUOWw4imcMUGJ4kurYCKYnRWSObYMU5bN1RGCyytfVU4H/WCvv/fpeefgsDnHBngEnoAuCMALcADegRE4AcR56AydN85b97F76B6571epTqupeQB+E/f4F8cjJJA=</latexit>

LNPP(ω, ω;D) =
1

2

n∑

i=1

[
log

∣∣k(Pi,Pi; ω) + 2ε2
0I
∣∣+ (yi → fPi(xi; ϑ))

→ (
k(Pi,Pi; ω) + ε2

0I
)↑1

(yi → fPi(xi; ϑ))

]

Kernel Regularization Term Squared Mahalanobis distance

PSD Covariance
matrix of the GP

Additional
noise term

Metrics
• MSE ↓: Measures the average squared difference between predicted and true value
• R2 ↑: Measures how well predictions explain the variance in the true data

 NPPs consistently outperform standard MSE baselines, NP, and ConvNP, especially in sparse label settings
and when partial labels are available at inference time — a setup we refer to as partial label revelation, where
some ground truth labels are revealed during inference to improve prediction accuracy across methods

Neural Point Processes for Pixel-wise Regression

Table 3: Experiment results for methods that use labels (ConvNP, NP, NPP-GP) and those that do not (Plain, NPP) on four
datasets. The best metrics are marked as Bold. The table compares MSE and R

2 metrics in the regression setting with
no label given and the label revelation setting where we incorporate labels in inference time. We observe that across all
datasets and settings, NPP and NPP-GP remain the best in their settings (no label or partial label revelation) respectively
for most cases. For cases where the best performing methods are approximately tied (equal up to the 3-rd digit), we repeat
experiments with three runs from different seeds and report standard deviations in Appendix D.

Real-world

Datasets Rotterdam COWC Partial
Point pattern Grid Random Grid Random label revelation

Metric MSE → R
2

↑ MSE → R
2

↑ MSE → R
2

↑ MSE → R
2

↑

Sparse

Plain 1.79 ↓0.058 1.14 0.297 17.99 0.060 17.7 0.078
✁NPP (ours) 1.76 ↓0.046 0.834 0.437 4.89 0.767 7.77 0.594

NPP-GP (ours) 1.76 ↓0.046 0.833 0.437 4.86 0.769 7.65 0.600
✂NP 1.44 0.047 1.64 ↓0.027 14.0 0.263 15.9 0.171

ConvNP 0.725 ↓4.44 1.12 ↓8.10 16.6 ↓0.529 5.68 0.768

Dense

Plain 1.55 0.100 0.486 0.678 10.9 0.432 14.51 0.208
✁NPP (ours) 1.25 0.286 0.453 0.700 5.67 0.704 5.31 0.710

NPP-GP (ours) 1.25 0.287 0.443 0.707 5.60 0.706 5.02 0.726
✂NP 1.20 0.196 1.199 0.197 17.9 0.066 13.2 0.272

ConvNP 0.581 ↓7.27 0.344 0.379 19.7 ↓3.12 3.47 0.922

Synthetic

Datasets PMNIST Synthetic Heatmaps Partial
Point pattern Grid Random Grid Random label revelation

Metric MSE → R
2

↑ MSE → R
2

↑ MSE → R
2

↑ MSE → R
2

↑

Sparse

Plain 67.5 0.087 0.456 0.992 1298 ↓15.0 14192 ↓173
✁NPP (ours) 72.0 0.026 0.451 0.993 94.6 ↓0.164 27.1 0.666

NPP-GP (ours) 56.3 0.239 0.451 0.993 75.2 0.075 27.5 0.661
✂NP 78.2 ↓0.072 44.8 0.404 111 ↓0.381 104 ↓0.587

ConvNP 63.2 ↓19.4 29.7 0.293 79.8 ↓5.28 12.1 0.761

Dense

Plain 0.467 0.994 0.181 0.998 104 ↓0.28 27.1 0.666
✁NPP (ours) 0.307 0.996 0.128 0.998 94.6 ↓0.164 26.9 0.669

NPP-GP (ours) 0.300 0.996 0.120 0.999 74.71 0.081 26.9 0.669
✂NP 64.6 0.121 27.2 0.627 59.2 0.269 43.2 0.467

ConvNP 12.7 0.765 10.0 0.861 24.9 0.246 19.1 0.727

only predict labels in this partial label revelation setting.

A summary of optimal hyperparameters/design choices is
given in Table 8 in Appendix C of the supplement. Every
hyperparameter selection is based on the MSE loss over
the validation set (see Section 5.3). We explore the fol-
lowing common hyperparameters for all four methods. We
set the batch size to 32 and explore for the optimal ini-
tial learning rate within {0.0001, 0.001, 0.01}. We use the
Adam (Kingma and Ba, 2015) optimizer and decrease the
learning rate by 0.1↔ until 0.0001 if the validation loss
does not decrease for 5 epochs.

We also explore architectural choices for the first three
methods. We use two different architectures as neural net-
works f : a simple autoencoder (AE) Kramer (1991) and
an autoencoder combined with a DDPM feature extractor
Bonito et al. (2023). We use 3 variants of each approach
(in terms of layers) as candidate networks, and treat the op-
timal architecture (out of 6 in total) as a hyperparameter to
be tuned over the validation set. Additional details of these
architectures are provided in Appendix C. For NP, we use
the latent embedding architecture originally proposed by
Garnelo et al. (2018a). Finally, for ConvNP we follow the
corresponding implementation from the public Neural Pro-
cesses Family package (NPF) (Dubois et al., 2020).

W.r.t. NPP (and NPP-GP), we explore two kernels: an RBF
Kernel and an SM kernel (see Table 1). As mentioned in
Section 4.2, we have three approaches to model the ker-
nel parameters: (a) a static kernel, whose parameters ω are
learned via validation (b) a learnable kernel, whose param-
eters ω are treated as parameters learned via loss minimiza-
tion, and (c) a context-aware Kernel, whose parameters ω

are regressed from features xi. For approach (a) we explore
the length-scale parameter ε ↗ {0.01, 0.1, 0.2, 0.5, 1, 2, 5}

for RBF; the optimal value via validation is used as a start-
ing point for approach (b). For SM, which contains a large
number of parameters, we only explore the number of mix-
tures Q ↗ {1, . . . , 5} and learn remain parameters via (b);
in particular, we initialize the kernel with weights µq = 1

Q
and an identity matrix !q = I. We assume the noise is of
a magnitude of ϑ0 = 10→5. Finally, to implement the last
last approach (c), we add a fully connected layer to the the
encoder part of the AE to regress the parameters for the ker-
nel. We treat these approaches as hyperparameter choices,
with the optimal kernel choice (static, learned, or context-
aware) determined by MSE on the validation set. Note that
the same optimal values are also used in NPP-GP.

Partial Label Revelation Experiments: We evaluate model performance when a few point labels are
revealed at inference time, enabling refined predictions

Medical Imaging Satellite Imaging Remote Sensing Air Pollution Data

Experiments

Dataset Point Distribution # Samples Width x Height # Labels Sparse # Labels Dense

Synthetic Heatmaps
grid 1000 28 x 28 9 100

random 1000 28 x 28 10 100

Point MNIST
grid 1000 28 x 28 9 100

random 1000 28 x 28 10 100

Rotterdam
grid 1000 100 x 100 16 121

random 1000 100 x 100 10 100

COWC
grid 1000 200 x 200 81 529

random 1000 200 x 200 100 500

Neural Point Processes for Pixel-wise Regression

Table 1: Common parametric kernels. Inputs x, y are assumed to be in Rd. Note that the RBF/Gaussian kernels are a
special case of the specral mixture kernel.

Name Kernel Function Parameters ω Dimension mω

Linear (Seeger, 2004) k(x, y) = x→AA→y embedding matrix A → Rd→d→
d ↑ d

↑

Polynomial (?) k(x, y) = (x→AA→y + c)d embedding matrix A → Rd→d→
, coeffi-

cient c → R, degree d → N
d ↑ d

↑ + 2

RBF (Seeger, 2004) k(x, y) = exp
(

→ ↑x↓y↑2

2ω2

)
length scale ε 1

Gaussian (?) k(x, y) = |!|
1
2

(2ε)d/2 exp
(

→ (x↓y)↑!(x↓y)
2

)
bandwidth matrix ! → Sd→d d→(d+1)

2

Rational Quadratic (Seeger, 2004) k(x, y) =
(

1 + ↑Ax↓Ay↑2

2ϑω2

)↓ϑ

shape ϑ > 0, length scale ε > 0, em-
bedding matrix A → Rd→d→

d ↑ d
↑ + 2

Spectral mixture (Wilson et al., 2016)
∑Q

q=1 aq
|!q|

1
2

(2ε)d/2 e↓ 1
2 ↑!1/2

q (x↓y)↑2 cos↑x → y, 2ωµq↓ mixture weights aq → [0, 1], diagonal
covariance matrices !q → Sd→d, fre-
quency vectors µq → Rd

Q ↑ (2d + 1)

at test time, the neural network can only make use of the
input x. If, however, we are given both x, and a few la-
beled points, we would like to exploit that information dur-
ing predictions; the neural network trained via Eq. (5) ig-
nores information provided by such labeled points.

4.2 Neural Point Processes

We address these two issues with our proposed neural point
processes, as illustrated in Figure 1b. Intuitively, we treat
the labels at every pixel as a Gaussian Process, whose
means are regressed by the neural network, and whose co-
variance is determined by a (known) kernel. An immediate
consequence is that point labels are now correlated; this not
only leads to a different estimation process than Eq. (5) but
also allows incorporating any available point labels at infer-
ence time in a principled fashion. Consider again a sample
image xi with a corresponding labeled point set (Pi, yi)
given by Eq. (4). We assume that, for point pi → [d1]↑[d2],
the corresponding label yi → R is given by:

yi = gi(pi) + ϖ, (6)

where ϖ ↓ N(0, ϱ
2
0) is i.i.d. noise, and gi(·) is a GP:

gi(·) ↓ GP(mi(·), ki(·, ·)), (7)

whose mean function mi : R2
↔ R and kernel function

ki(·, ·) are given by

mi(p) = fp(xi;ς) → R, ki(p, p↑) = k(p, p↑; ωi),
for p, p↑

→ [d1] ↑ [d2].
(8)

Thus, means are again the projections of the output of a
neural network f : Rd1→d2 ↑ Rmω ↔ Rd1→d2 parameter-
ized by ς, and k(·, ·) is a parametric positive semidefinite
kernel parameterized by ωi → Rmε such as, e.g., the RBF
kernel. Moreover, the kernel parameter may or may not
depend on the image xi as we have three regimes to com-
pute ωi. Additional examples of parametric kernel candi-
dates and their parameters are provided in Table 1. Under

this assumption, we can estimate model parameters from a
dataset D through maximum likelihood estimation (MLE):

Theorem 1. If (a) labels are generated according to
Eq. (6), with i.i.d. noise ϱ0, and (b) GPs gi given by Eq. (7)
are also independent across images, then the maximum
likelihood estimate of ς can be obtained by minimizing

LNPP(ς, ω; D) = 1
2

n∑

i=1

[
log |k(Pi,Pi;ω) + 2ϱ

2
0I|+ (9)

(yi↗fPi(xi; ς))↓(k(Pi,Pi;ω)+ϱ
2
0I)↔1(yi↗fPi(xi; ς))

]
.

where k(Pi,Pi;ω) → RLi→Li is the PSD covariance matrix
of GP gi over points Pi.

The proof can be found in Appendix A in the supplement.
We refer to Eq. (9) as the NPP loss. We observe that, com-
pared to standard MSE (Eq. (5)), which treats all residual
error terms equally in the Euclidean space, the error terms
are measured in the squared Mahalanobis distance, as im-
posed by the kernel/covariance matrix k(Pi, Pi; ω). In-
tuitively, this enforces correlations between the values of
points that are proximal. Parameter ϱ

2
0 that corresponds to

label noise can either be set to a small value, to ensure in-
vertibility or can be treated as a hyperparameter that can be
determined by measuring performance on a validation set.

We note there are several approaches to model the kernel
parameters ω: (a) Static Kernel: the parameters be treated
as hyperparameters, tuned on a validation set along with
ϱ0. (b) Learnable Kernel: alternatively, as the NPP loss
is differentiable w.r.t. ω, these can be estimated via gradi-
ent descent (GD) along with ς. Note that the second term
in Eq. (9) acts as an anisotropic regularization term in this
case. (c) Context-aware Kernel: finally, the kernel param-
eters can be regressed from the input as well. This is par-
ticularly useful in scenarios where each input image may
have distinct underlying spatial structures or correlations,
such as satellite images of different geographic regions.

Random Sparse Random Dense Grid Sparse Grid Dense

Rotterdam Point MNIST Synthetic Heatmaps COWC

Baselines Compared
•Plain: Standard MSE-trained network
•NP (Neural Processes) [Garnelo et al., 2018]
•ConvNP (Convolutional Neural Processes)

[Gordon et al., 2020]
•NPP (Ours): Gaussian Process regularized training
•NPP-GP (Ours): NPP + posterior update with

partial labels

Architectures (Plain, NPP, NPP-GP methods)
•AE (Autoencoder)
•DDPM + AE (Denoising Diffusion Probabilistic Model + AE)

Kernel Strategies (NPP, NPP-GP methods)
•Static: Fixed kernel (e.g., RBF), tuned via validation
•Learnable: Kernel params optimized during training
•Context-aware: parameters regressed from the input

Acknowledgement
Research was sponsored by the United States Army Core of Engineers (USACE) Engineer Research and
Development Center (ERDC) Geospatial Research Laboratory (GRL) and was accomplished under Cooperative
Agreement Federal Award Identification Number (FAIN) W9132V-22-2-0001. The views and conclusions contained
in this document are those of the authors and should not be interpreted as representing the official policies, either
expressed or implied, of USACE EDRC GRL or the U.S. Government. The U.S. Government is authorized to
reproduce and distribute reprints for Government purposes notwithstanding any copyright notation herein.

 We fit a neural network (NN) , parametrized by , that takes an input image
and predicts values at all possible pixel locations

Shi, Özcan, Sirera Perelló, Li, Shamsi, Ioannidis

rectly predicts labels for an arbitrarily sized subset of pix-
els simultaneously. Finally, and most importantly, models
in the neural process family only operate under the partial
label revelation setting (see Sec. 4.3): they require some
labeled samples to be revealed at inference time in order to
predict remaining labels. This is again in contrast to NPPs,
which can be used even when no such labels are available.

Diffusion models (Sohl-Dickstein et al., 2015; Ho et al.,
2020) reinforce correlations across nearby pixels through
diffusion operations within latent layers. Baranchuk et al.
(2022) propose using the diffusion model as a feature ex-
tractor for semantic segmentation when ground truth labels
are scarce. The authors build a fully connected network
as a pixel-wise classifier fed with pixel-level representa-
tions from a pre-trained Denoising Diffusion Probabilistic
Model (DDPM). Exploiting correlations in the input is or-
thogonal to our approach, which attempts to exploit cor-
relations in the output; to illustrate this, we use DDPMs
(Bandara et al., 2022) as a feature extractor in our imple-
mentation of NPPs during our experimentation.

3 Background: Gaussian Processes

A vector-valued random variable x → Rn is said to have a
multivariate normal (or Gaussian) distribution with mean
µ → Rn and covariance matrix ! → Rn→n (i.e., x ↑

N (µ,!)) if

p(x;µ,!) =
exp

(
↓

1
2 (x ↓ µ)T!↑1(x ↓ µ)

)

(2ω)n/2|!|1/2 , (1)

where ! is a symmetric and positive definite and |!| is
its determinant. A Gaussian Process (GP) is a stochas-
tic process comprising (potentially infinitely many) ran-
dom variables, such that any finite subcollection has a mul-
tivariate Gaussian distribution (Do and Lee, 2020; Ras-
mussen, 2003). Formally, a collection of random variables
{g(x) : x → X } indexed by set X is a GP with mean
function m(·) and a symmetric and positive semi-definite
covariance or kernel function k(·, ·) if for any finite set of
elements x1, . . . , xm → X , the associated finite set of ran-
dom variables g(x1), . . . , g(xm) are jointly distributed as:

[
g(x1)

...
g(xm)

]
↑N

([
m(x1)

...
m(xm)

]
,

[
k(x1,x1) ... k(x1,xm)

...
. . .

...
k(xm,x1) ... k(xm,xm)

])
. (2)

We denote this succinctly via: g(·) ↑ GP(m(·), k(·, ·)).
The above properties imply that, for any x, x↓

→ X ,

m(x) = E[g(x)], (3a)
k(x, x↓) = E[(g(x) ↓ m(x))(g(x↓) ↓ m(x↓))]. (3b)

4 LEARNING NEURAL POINT
PROCESSES

We introduce the problem of sparse pixel-wise regression,
defining first MSE estimation in this context. We then in-
troduce NPPs and apply them to this setting.

4.1 Problem Formulation

For the purposes of our analysis, a point is an element in
R2, and a point set A ↔ R2 is a finite collection of points.1
As illustrated in Figure 1a, we are given images and a set
of labeled points (i.e., pixels) in them: our goal is to regress
the label at any given point from the corresponding source
image. Images could correspond to, e.g., a satellite im-
age of a specific location, or any other 2d representation of
a geographic area (e.g., a temperature or traffic map) and
points could correspond to values of measurements col-
lected at different coordinates (such as, e.g., air pollution,
humidity, cellphone signal quality, etc.) by geographically
dispersed sensors. Formally, we consider a dataset of n

images xi → Rd1→d2 , where i → [n].2 Each image xi is
associated with a labeled point set (Pi, yi), where

Pi = [p(1)
i , . . . , p(Li)

i] and yi = [y(1)
i , . . . , y

(Li)
i]. (4)

Here, p(ω)
i → [d1] ↗ [d2], ε → [Li], are a set of points (i.e.,

image pixels), and y
(ω)
i → R, ε → [Li], are the correspond-

ing labels. Note that each label is indexed by the point (i.e.,
pixel) at which it is measured. We denote the entire dataset
by D = {(xi, Pi, yi)}n

i=1.

A straightforward way to regress labeled point values from
an image is by fitting a neural network via, e.g., a mean
squared error (MSE) loss on the labeled points. Consider
a neural network f : Rd1→d2 ↗ Rmω ↘ Rd1→d2 , parame-
terized by ϑ → Rmω , that receives as input an image x and
produces the values where f(x; ϑ) → Rd1→d2 at all possi-
ble points p → [d1]↗ [d2]. Parameters ϑ can thus be learned
by minimizing:

LMSE(ϑ, D) =
∑n

i=1
∑Li

ω=1
(
f

p(ε)
i

(xi; ϑ) ↓ y
(ω)
i

)2

=
∑n

i=1 ≃fPi(xi; ϑ) ↓ yi≃
2
2,

(5)

where by fPi(·; ·) we denote the restriction/projection of
the output of the neural network to the coordinates Pi.
However, Eq. (5) does not consider potential spatial cor-
relations between nearby points. Such correlations may in-
deed manifest if, e.g., measurements occur at nearby loca-
tions. As a result, the neural network trained thusly might
have a poor bias/variance trade-off, failing to exploit cor-
relations due to proximity. An additional drawback is that,

1This can be thought of an instantiation of a point process (Da-
ley et al., 2003), which is a random map from every subset
S → Rd to N (counting the number of points in this set).

2We use the notation [k] ↑ {1, . . . , k} for k ↓ N.

Shi, Özcan, Sirera Perelló, Li, Shamsi, Ioannidis

rectly predicts labels for an arbitrarily sized subset of pix-
els simultaneously. Finally, and most importantly, models
in the neural process family only operate under the partial
label revelation setting (see Sec. 4.3): they require some
labeled samples to be revealed at inference time in order to
predict remaining labels. This is again in contrast to NPPs,
which can be used even when no such labels are available.

Diffusion models (Sohl-Dickstein et al., 2015; Ho et al.,
2020) reinforce correlations across nearby pixels through
diffusion operations within latent layers. Baranchuk et al.
(2022) propose using the diffusion model as a feature ex-
tractor for semantic segmentation when ground truth labels
are scarce. The authors build a fully connected network
as a pixel-wise classifier fed with pixel-level representa-
tions from a pre-trained Denoising Diffusion Probabilistic
Model (DDPM). Exploiting correlations in the input is or-
thogonal to our approach, which attempts to exploit cor-
relations in the output; to illustrate this, we use DDPMs
(Bandara et al., 2022) as a feature extractor in our imple-
mentation of NPPs during our experimentation.

3 Background: Gaussian Processes

A vector-valued random variable x → Rn is said to have a
multivariate normal (or Gaussian) distribution with mean
µ → Rn and covariance matrix ! → Rn→n (i.e., x ↑

N (µ,!)) if

p(x;µ,!) =
exp

(
↓

1
2 (x ↓ µ)T!↑1(x ↓ µ)

)

(2ω)n/2|!|1/2 , (1)

where ! is a symmetric and positive definite and |!| is
its determinant. A Gaussian Process (GP) is a stochas-
tic process comprising (potentially infinitely many) ran-
dom variables, such that any finite subcollection has a mul-
tivariate Gaussian distribution (Do and Lee, 2020; Ras-
mussen, 2003). Formally, a collection of random variables
{g(x) : x → X } indexed by set X is a GP with mean
function m(·) and a symmetric and positive semi-definite
covariance or kernel function k(·, ·) if for any finite set of
elements x1, . . . , xm → X , the associated finite set of ran-
dom variables g(x1), . . . , g(xm) are jointly distributed as:

[
g(x1)

...
g(xm)

]
↑N

([
m(x1)

...
m(xm)

]
,

[
k(x1,x1) ... k(x1,xm)

...
. . .

...
k(xm,x1) ... k(xm,xm)

])
. (2)

We denote this succinctly via: g(·) ↑ GP(m(·), k(·, ·)).
The above properties imply that, for any x, x↓

→ X ,

m(x) = E[g(x)], (3a)
k(x, x↓) = E[(g(x) ↓ m(x))(g(x↓) ↓ m(x↓))]. (3b)

4 LEARNING NEURAL POINT
PROCESSES

We introduce the problem of sparse pixel-wise regression,
defining first MSE estimation in this context. We then in-
troduce NPPs and apply them to this setting.

4.1 Problem Formulation

For the purposes of our analysis, a point is an element in
R2, and a point set A ↔ R2 is a finite collection of points.1
As illustrated in Figure 1a, we are given images and a set
of labeled points (i.e., pixels) in them: our goal is to regress
the label at any given point from the corresponding source
image. Images could correspond to, e.g., a satellite im-
age of a specific location, or any other 2d representation of
a geographic area (e.g., a temperature or traffic map) and
points could correspond to values of measurements col-
lected at different coordinates (such as, e.g., air pollution,
humidity, cellphone signal quality, etc.) by geographically
dispersed sensors. Formally, we consider a dataset of n

images xi → Rd1→d2 , where i → [n].2 Each image xi is
associated with a labeled point set (Pi, yi), where

Pi = [p(1)
i , . . . , p(Li)

i] and yi = [y(1)
i , . . . , y

(Li)
i]. (4)

Here, p(ω)
i → [d1] ↗ [d2], ε → [Li], are a set of points (i.e.,

image pixels), and y
(ω)
i → R, ε → [Li], are the correspond-

ing labels. Note that each label is indexed by the point (i.e.,
pixel) at which it is measured. We denote the entire dataset
by D = {(xi, Pi, yi)}n

i=1.

A straightforward way to regress labeled point values from
an image is by fitting a neural network via, e.g., a mean
squared error (MSE) loss on the labeled points. Consider
a neural network f : Rd1→d2 ↗ Rmω ↘ Rd1→d2 , parame-
terized by ϑ → Rmω , that receives as input an image x and
produces the values where f(x; ϑ) → Rd1→d2 at all possi-
ble points p → [d1]↗ [d2]. Parameters ϑ can thus be learned
by minimizing:

LMSE(ϑ, D) =
∑n

i=1
∑Li

ω=1
(
f

p(ε)
i

(xi; ϑ) ↓ y
(ω)
i

)2

=
∑n

i=1 ≃fPi(xi; ϑ) ↓ yi≃
2
2,

(5)

where by fPi(·; ·) we denote the restriction/projection of
the output of the neural network to the coordinates Pi.
However, Eq. (5) does not consider potential spatial cor-
relations between nearby points. Such correlations may in-
deed manifest if, e.g., measurements occur at nearby loca-
tions. As a result, the neural network trained thusly might
have a poor bias/variance trade-off, failing to exploit cor-
relations due to proximity. An additional drawback is that,

1This can be thought of an instantiation of a point process (Da-
ley et al., 2003), which is a random map from every subset
S → Rd to N (counting the number of points in this set).

2We use the notation [k] ↑ {1, . . . , k} for k ↓ N.

Shi, Özcan, Sirera Perelló, Li, Shamsi, Ioannidis

rectly predicts labels for an arbitrarily sized subset of pix-
els simultaneously. Finally, and most importantly, models
in the neural process family only operate under the partial
label revelation setting (see Sec. 4.3): they require some
labeled samples to be revealed at inference time in order to
predict remaining labels. This is again in contrast to NPPs,
which can be used even when no such labels are available.

Diffusion models (Sohl-Dickstein et al., 2015; Ho et al.,
2020) reinforce correlations across nearby pixels through
diffusion operations within latent layers. Baranchuk et al.
(2022) propose using the diffusion model as a feature ex-
tractor for semantic segmentation when ground truth labels
are scarce. The authors build a fully connected network
as a pixel-wise classifier fed with pixel-level representa-
tions from a pre-trained Denoising Diffusion Probabilistic
Model (DDPM). Exploiting correlations in the input is or-
thogonal to our approach, which attempts to exploit cor-
relations in the output; to illustrate this, we use DDPMs
(Bandara et al., 2022) as a feature extractor in our imple-
mentation of NPPs during our experimentation.

3 Background: Gaussian Processes

A vector-valued random variable x → Rn is said to have a
multivariate normal (or Gaussian) distribution with mean
µ → Rn and covariance matrix ! → Rn→n (i.e., x ↑

N (µ,!)) if

p(x;µ,!) =
exp

(
↓

1
2 (x ↓ µ)T!↑1(x ↓ µ)

)

(2ω)n/2|!|1/2 , (1)

where ! is a symmetric and positive definite and |!| is
its determinant. A Gaussian Process (GP) is a stochas-
tic process comprising (potentially infinitely many) ran-
dom variables, such that any finite subcollection has a mul-
tivariate Gaussian distribution (Do and Lee, 2020; Ras-
mussen, 2003). Formally, a collection of random variables
{g(x) : x → X } indexed by set X is a GP with mean
function m(·) and a symmetric and positive semi-definite
covariance or kernel function k(·, ·) if for any finite set of
elements x1, . . . , xm → X , the associated finite set of ran-
dom variables g(x1), . . . , g(xm) are jointly distributed as:

[
g(x1)

...
g(xm)

]
↑N

([
m(x1)

...
m(xm)

]
,

[
k(x1,x1) ... k(x1,xm)

...
. . .

...
k(xm,x1) ... k(xm,xm)

])
. (2)

We denote this succinctly via: g(·) ↑ GP(m(·), k(·, ·)).
The above properties imply that, for any x, x↓

→ X ,

m(x) = E[g(x)], (3a)
k(x, x↓) = E[(g(x) ↓ m(x))(g(x↓) ↓ m(x↓))]. (3b)

4 LEARNING NEURAL POINT
PROCESSES

We introduce the problem of sparse pixel-wise regression,
defining first MSE estimation in this context. We then in-
troduce NPPs and apply them to this setting.

4.1 Problem Formulation

For the purposes of our analysis, a point is an element in
R2, and a point set A ↔ R2 is a finite collection of points.1
As illustrated in Figure 1a, we are given images and a set
of labeled points (i.e., pixels) in them: our goal is to regress
the label at any given point from the corresponding source
image. Images could correspond to, e.g., a satellite im-
age of a specific location, or any other 2d representation of
a geographic area (e.g., a temperature or traffic map) and
points could correspond to values of measurements col-
lected at different coordinates (such as, e.g., air pollution,
humidity, cellphone signal quality, etc.) by geographically
dispersed sensors. Formally, we consider a dataset of n

images xi → Rd1→d2 , where i → [n].2 Each image xi is
associated with a labeled point set (Pi, yi), where

Pi = [p(1)
i , . . . , p(Li)

i] and yi = [y(1)
i , . . . , y

(Li)
i]. (4)

Here, p(ω)
i → [d1] ↗ [d2], ε → [Li], are a set of points (i.e.,

image pixels), and y
(ω)
i → R, ε → [Li], are the correspond-

ing labels. Note that each label is indexed by the point (i.e.,
pixel) at which it is measured. We denote the entire dataset
by D = {(xi, Pi, yi)}n

i=1.

A straightforward way to regress labeled point values from
an image is by fitting a neural network via, e.g., a mean
squared error (MSE) loss on the labeled points. Consider
a neural network f : Rd1→d2 ↗ Rmω ↘ Rd1→d2 , parame-
terized by ϑ → Rmω , that receives as input an image x and
produces the values where f(x; ϑ) → Rd1→d2 at all possi-
ble points p → [d1]↗ [d2]. Parameters ϑ can thus be learned
by minimizing:

LMSE(ϑ, D) =
∑n

i=1
∑Li

ω=1
(
f

p(ε)
i

(xi; ϑ) ↓ y
(ω)
i

)2

=
∑n

i=1 ≃fPi(xi; ϑ) ↓ yi≃
2
2,

(5)

where by fPi(·; ·) we denote the restriction/projection of
the output of the neural network to the coordinates Pi.
However, Eq. (5) does not consider potential spatial cor-
relations between nearby points. Such correlations may in-
deed manifest if, e.g., measurements occur at nearby loca-
tions. As a result, the neural network trained thusly might
have a poor bias/variance trade-off, failing to exploit cor-
relations due to proximity. An additional drawback is that,

1This can be thought of an instantiation of a point process (Da-
ley et al., 2003), which is a random map from every subset
S → Rd to N (counting the number of points in this set).

2We use the notation [k] ↑ {1, . . . , k} for k ↓ N.

<latexit sha1_base64="naiAw48QoYk6QJeQeOcMhkWrZuo=">AAACCHicbVBNS8NAEJ34WetX1KMHF4vgqSRFqseiF49V7Ac0tWy2m3bpZhN2N0IJPXrxr3jxoIhXf4I3/42bNgdtfTDweG+GmXl+zJnSjvNtLS2vrK6tFzaKm1vbO7v23n5TRYkktEEiHsm2jxXlTNCGZprTdiwpDn1OW/7oKvNbD1QqFok7PY5pN8QDwQJGsDZSzz7yQqyHfpDGkx5DHhNoJvjp7eQeVVDPLjllZwq0SNyclCBHvWd/ef2IJCEVmnCsVMd1Yt1NsdSMcDopeomiMSYjPKAdQwUOqeqm00cm6MQofRRE0pTQaKr+nkhxqNQ49E1ndqWa9zLxP6+T6OCimzIRJ5oKMlsUJBzpCGWpoD6TlGg+NgQTycytiAyxxESb7IomBHf+5UXSrJTdarl6c1aqXeZxFOAQjuEUXDiHGlxDHRpA4BGe4RXerCfrxXq3PmatS1Y+cwB/YH3+AOaXmUE=</latexit>

pi → R2 <latexit sha1_base64="AJPQiq8ysUU30I0K9bz66UVNH3I=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqseiF48V7Qe0oWy2m3bpZhN2J0Io/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xCzhfkSHSoSCUbTSQ9YX/XLFrbpzkFXi5aQCORr98ldvELM04gqZpMZ0PTdBf0I1Cib5tNRLDU8oG9Mh71qqaMSNP5mfOiVnVhmQMNa2FJK5+ntiQiNjsiiwnRHFkVn2ZuJ/XjfF8NqfCJWkyBVbLApTSTAms7/JQGjOUGaWUKaFvZWwEdWUoU2nZEPwll9eJa2Lqler1u4vK/WbPI4inMApnIMHV1CHO2hAExgM4Rle4c2Rzovz7nwsWgtOPnMMf+B8/gBlqI3k</latexit>yi

Neural Point Processes for Pixel-wise Regression

Table 1: Common parametric kernels. Inputs x, y are assumed to be in Rd. Note that the RBF/Gaussian kernels are a
special case of the specral mixture kernel.

Name Kernel Function Parameters ω Dimension mω

Linear (Seeger, 2004) k(x, y) = x→AA→y embedding matrix A → Rd→d→
d ↑ d

↑

Polynomial (?) k(x, y) = (x→AA→y + c)d embedding matrix A → Rd→d→
, coeffi-

cient c → R, degree d → N
d ↑ d

↑ + 2

RBF (Seeger, 2004) k(x, y) = exp
(

→ ↑x↓y↑2

2ω2

)
length scale ε 1

Gaussian (?) k(x, y) = |!|
1
2

(2ε)d/2 exp
(

→ (x↓y)↑!(x↓y)
2

)
bandwidth matrix ! → Sd→d d→(d+1)

2

Rational Quadratic (Seeger, 2004) k(x, y) =
(

1 + ↑Ax↓Ay↑2

2ϑω2

)↓ϑ

shape ϑ > 0, length scale ε > 0, em-
bedding matrix A → Rd→d→

d ↑ d
↑ + 2

Spectral mixture (Wilson et al., 2016)
∑Q

q=1 aq
|!q|

1
2

(2ε)d/2 e↓ 1
2 ↑!1/2

q (x↓y)↑2 cos↑x → y, 2ωµq↓ mixture weights aq → [0, 1], diagonal
covariance matrices !q → Sd→d, fre-
quency vectors µq → Rd

Q ↑ (2d + 1)

at test time, the neural network can only make use of the
input x. If, however, we are given both x, and a few la-
beled points, we would like to exploit that information dur-
ing predictions; the neural network trained via Eq. (5) ig-
nores information provided by such labeled points.

4.2 Neural Point Processes

We address these two issues with our proposed neural point
processes, as illustrated in Figure 1b. Intuitively, we treat
the labels at every pixel as a Gaussian Process, whose
means are regressed by the neural network, and whose co-
variance is determined by a (known) kernel. An immediate
consequence is that point labels are now correlated; this not
only leads to a different estimation process than Eq. (5) but
also allows incorporating any available point labels at infer-
ence time in a principled fashion. Consider again a sample
image xi with a corresponding labeled point set (Pi, yi)
given by Eq. (4). We assume that, for point pi → [d1]↑[d2],
the corresponding label yi → R is given by:

yi = gi(pi) + ϖ, (6)

where ϖ ↓ N(0, ϱ
2
0) is i.i.d. noise, and gi(·) is a GP:

gi(·) ↓ GP(mi(·), ki(·, ·)), (7)

whose mean function mi : R2
↔ R and kernel function

ki(·, ·) are given by

mi(p) = fp(xi;ς) → R, ki(p, p↑) = k(p, p↑; ωi),
for p, p↑

→ [d1] ↑ [d2].
(8)

Thus, means are again the projections of the output of a
neural network f : Rd1→d2 ↑ Rmω ↔ Rd1→d2 parameter-
ized by ς, and k(·, ·) is a parametric positive semidefinite
kernel parameterized by ωi → Rmε such as, e.g., the RBF
kernel. Moreover, the kernel parameter may or may not
depend on the image xi as we have three regimes to com-
pute ωi. Additional examples of parametric kernel candi-
dates and their parameters are provided in Table 1. Under

this assumption, we can estimate model parameters from a
dataset D through maximum likelihood estimation (MLE):

Theorem 1. If (a) labels are generated according to
Eq. (6), with i.i.d. noise ϱ0, and (b) GPs gi given by Eq. (7)
are also independent across images, then the maximum
likelihood estimate of ς can be obtained by minimizing

LNPP(ς, ω; D) = 1
2

n∑

i=1

[
log |k(Pi,Pi;ω) + 2ϱ

2
0I|+ (9)

(yi↗fPi(xi; ς))↓(k(Pi,Pi;ω)+ϱ
2
0I)↔1(yi↗fPi(xi; ς))

]
.

where k(Pi,Pi;ω) → RLi→Li is the PSD covariance matrix
of GP gi over points Pi.

The proof can be found in Appendix A in the supplement.
We refer to Eq. (9) as the NPP loss. We observe that, com-
pared to standard MSE (Eq. (5)), which treats all residual
error terms equally in the Euclidean space, the error terms
are measured in the squared Mahalanobis distance, as im-
posed by the kernel/covariance matrix k(Pi, Pi; ω). In-
tuitively, this enforces correlations between the values of
points that are proximal. Parameter ϱ

2
0 that corresponds to

label noise can either be set to a small value, to ensure in-
vertibility or can be treated as a hyperparameter that can be
determined by measuring performance on a validation set.

We note there are several approaches to model the kernel
parameters ω: (a) Static Kernel: the parameters be treated
as hyperparameters, tuned on a validation set along with
ϱ0. (b) Learnable Kernel: alternatively, as the NPP loss
is differentiable w.r.t. ω, these can be estimated via gradi-
ent descent (GD) along with ς. Note that the second term
in Eq. (9) acts as an anisotropic regularization term in this
case. (c) Context-aware Kernel: finally, the kernel param-
eters can be regressed from the input as well. This is par-
ticularly useful in scenarios where each input image may
have distinct underlying spatial structures or correlations,
such as satellite images of different geographic regions.

Neural Point Processes for Pixel-wise Regression

Table 1: Common parametric kernels. Inputs x, y are assumed to be in Rd. Note that the RBF/Gaussian kernels are a
special case of the specral mixture kernel.

Name Kernel Function Parameters ω Dimension mω

Linear (Seeger, 2004) k(x, y) = x→AA→y embedding matrix A → Rd→d→
d ↑ d

↑

Polynomial (?) k(x, y) = (x→AA→y + c)d embedding matrix A → Rd→d→
, coeffi-

cient c → R, degree d → N
d ↑ d

↑ + 2

RBF (Seeger, 2004) k(x, y) = exp
(

→ ↑x↓y↑2

2ω2

)
length scale ε 1

Gaussian (?) k(x, y) = |!|
1
2

(2ε)d/2 exp
(

→ (x↓y)↑!(x↓y)
2

)
bandwidth matrix ! → Sd→d d→(d+1)

2

Rational Quadratic (Seeger, 2004) k(x, y) =
(

1 + ↑Ax↓Ay↑2

2ϑω2

)↓ϑ

shape ϑ > 0, length scale ε > 0, em-
bedding matrix A → Rd→d→

d ↑ d
↑ + 2

Spectral mixture (Wilson et al., 2016)
∑Q

q=1 aq
|!q|

1
2

(2ε)d/2 e↓ 1
2 ↑!1/2

q (x↓y)↑2 cos↑x → y, 2ωµq↓ mixture weights aq → [0, 1], diagonal
covariance matrices !q → Sd→d, fre-
quency vectors µq → Rd

Q ↑ (2d + 1)

at test time, the neural network can only make use of the
input x. If, however, we are given both x, and a few la-
beled points, we would like to exploit that information dur-
ing predictions; the neural network trained via Eq. (5) ig-
nores information provided by such labeled points.

4.2 Neural Point Processes

We address these two issues with our proposed neural point
processes, as illustrated in Figure 1b. Intuitively, we treat
the labels at every pixel as a Gaussian Process, whose
means are regressed by the neural network, and whose co-
variance is determined by a (known) kernel. An immediate
consequence is that point labels are now correlated; this not
only leads to a different estimation process than Eq. (5) but
also allows incorporating any available point labels at infer-
ence time in a principled fashion. Consider again a sample
image xi with a corresponding labeled point set (Pi, yi)
given by Eq. (4). We assume that, for point pi → [d1]↑[d2],
the corresponding label yi → R is given by:

yi = gi(pi) + ϖ, (6)

where ϖ ↓ N(0, ϱ
2
0) is i.i.d. noise, and gi(·) is a GP:

gi(·) ↓ GP(mi(·), ki(·, ·)), (7)

whose mean function mi : R2
↔ R and kernel function

ki(·, ·) are given by

mi(p) = fp(xi;ς) → R, ki(p, p↑) = k(p, p↑; ωi),
for p, p↑

→ [d1] ↑ [d2].
(8)

Thus, means are again the projections of the output of a
neural network f : Rd1→d2 ↑ Rmω ↔ Rd1→d2 parameter-
ized by ς, and k(·, ·) is a parametric positive semidefinite
kernel parameterized by ωi → Rmε such as, e.g., the RBF
kernel. Moreover, the kernel parameter may or may not
depend on the image xi as we have three regimes to com-
pute ωi. Additional examples of parametric kernel candi-
dates and their parameters are provided in Table 1. Under

this assumption, we can estimate model parameters from a
dataset D through maximum likelihood estimation (MLE):

Theorem 1. If (a) labels are generated according to
Eq. (6), with i.i.d. noise ϱ0, and (b) GPs gi given by Eq. (7)
are also independent across images, then the maximum
likelihood estimate of ς can be obtained by minimizing

LNPP(ς, ω; D) = 1
2

n∑

i=1

[
log |k(Pi,Pi;ω) + 2ϱ

2
0I|+ (9)

(yi↗fPi(xi; ς))↓(k(Pi,Pi;ω)+ϱ
2
0I)↔1(yi↗fPi(xi; ς))

]
.

where k(Pi,Pi;ω) → RLi→Li is the PSD covariance matrix
of GP gi over points Pi.

The proof can be found in Appendix A in the supplement.
We refer to Eq. (9) as the NPP loss. We observe that, com-
pared to standard MSE (Eq. (5)), which treats all residual
error terms equally in the Euclidean space, the error terms
are measured in the squared Mahalanobis distance, as im-
posed by the kernel/covariance matrix k(Pi, Pi; ω). In-
tuitively, this enforces correlations between the values of
points that are proximal. Parameter ϱ

2
0 that corresponds to

label noise can either be set to a small value, to ensure in-
vertibility or can be treated as a hyperparameter that can be
determined by measuring performance on a validation set.

We note there are several approaches to model the kernel
parameters ω: (a) Static Kernel: the parameters be treated
as hyperparameters, tuned on a validation set along with
ϱ0. (b) Learnable Kernel: alternatively, as the NPP loss
is differentiable w.r.t. ω, these can be estimated via gradi-
ent descent (GD) along with ς. Note that the second term
in Eq. (9) acts as an anisotropic regularization term in this
case. (c) Context-aware Kernel: finally, the kernel param-
eters can be regressed from the input as well. This is par-
ticularly useful in scenarios where each input image may
have distinct underlying spatial structures or correlations,
such as satellite images of different geographic regions.

Neural Point Processes for Pixel-wise Regression

Table 1: Common parametric kernels. Inputs x, y are assumed to be in Rd. Note that the RBF/Gaussian kernels are a
special case of the specral mixture kernel.

Name Kernel Function Parameters ω Dimension mω

Linear (Seeger, 2004) k(x, y) = x→AA→y embedding matrix A → Rd→d→
d ↑ d

↑

Polynomial (?) k(x, y) = (x→AA→y + c)d embedding matrix A → Rd→d→
, coeffi-

cient c → R, degree d → N
d ↑ d

↑ + 2

RBF (Seeger, 2004) k(x, y) = exp
(

→ ↑x↓y↑2

2ω2

)
length scale ε 1

Gaussian (?) k(x, y) = |!|
1
2

(2ε)d/2 exp
(

→ (x↓y)↑!(x↓y)
2

)
bandwidth matrix ! → Sd→d d→(d+1)

2

Rational Quadratic (Seeger, 2004) k(x, y) =
(

1 + ↑Ax↓Ay↑2

2ϑω2

)↓ϑ

shape ϑ > 0, length scale ε > 0, em-
bedding matrix A → Rd→d→

d ↑ d
↑ + 2

Spectral mixture (Wilson et al., 2016)
∑Q

q=1 aq
|!q|

1
2

(2ε)d/2 e↓ 1
2 ↑!1/2

q (x↓y)↑2 cos↑x → y, 2ωµq↓ mixture weights aq → [0, 1], diagonal
covariance matrices !q → Sd→d, fre-
quency vectors µq → Rd

Q ↑ (2d + 1)

at test time, the neural network can only make use of the
input x. If, however, we are given both x, and a few la-
beled points, we would like to exploit that information dur-
ing predictions; the neural network trained via Eq. (5) ig-
nores information provided by such labeled points.

4.2 Neural Point Processes

We address these two issues with our proposed neural point
processes, as illustrated in Figure 1b. Intuitively, we treat
the labels at every pixel as a Gaussian Process, whose
means are regressed by the neural network, and whose co-
variance is determined by a (known) kernel. An immediate
consequence is that point labels are now correlated; this not
only leads to a different estimation process than Eq. (5) but
also allows incorporating any available point labels at infer-
ence time in a principled fashion. Consider again a sample
image xi with a corresponding labeled point set (Pi, yi)
given by Eq. (4). We assume that, for point pi → [d1]↑[d2],
the corresponding label yi → R is given by:

yi = gi(pi) + ϖ, (6)

where ϖ ↓ N(0, ϱ
2
0) is i.i.d. noise, and gi(·) is a GP:

gi(·) ↓ GP(mi(·), ki(·, ·)), (7)

whose mean function mi : R2
↔ R and kernel function

ki(·, ·) are given by

mi(p) = fp(xi;ς) → R, ki(p, p↑) = k(p, p↑; ωi),
for p, p↑

→ [d1] ↑ [d2].
(8)

Thus, means are again the projections of the output of a
neural network f : Rd1→d2 ↑ Rmω ↔ Rd1→d2 parameter-
ized by ς, and k(·, ·) is a parametric positive semidefinite
kernel parameterized by ωi → Rmε such as, e.g., the RBF
kernel. Moreover, the kernel parameter may or may not
depend on the image xi as we have three regimes to com-
pute ωi. Additional examples of parametric kernel candi-
dates and their parameters are provided in Table 1. Under

this assumption, we can estimate model parameters from a
dataset D through maximum likelihood estimation (MLE):

Theorem 1. If (a) labels are generated according to
Eq. (6), with i.i.d. noise ϱ0, and (b) GPs gi given by Eq. (7)
are also independent across images, then the maximum
likelihood estimate of ς can be obtained by minimizing

LNPP(ς, ω; D) = 1
2

n∑

i=1

[
log |k(Pi,Pi;ω) + 2ϱ

2
0I|+ (9)

(yi↗fPi(xi; ς))↓(k(Pi,Pi;ω)+ϱ
2
0I)↔1(yi↗fPi(xi; ς))

]
.

where k(Pi,Pi;ω) → RLi→Li is the PSD covariance matrix
of GP gi over points Pi.

The proof can be found in Appendix A in the supplement.
We refer to Eq. (9) as the NPP loss. We observe that, com-
pared to standard MSE (Eq. (5)), which treats all residual
error terms equally in the Euclidean space, the error terms
are measured in the squared Mahalanobis distance, as im-
posed by the kernel/covariance matrix k(Pi, Pi; ω). In-
tuitively, this enforces correlations between the values of
points that are proximal. Parameter ϱ

2
0 that corresponds to

label noise can either be set to a small value, to ensure in-
vertibility or can be treated as a hyperparameter that can be
determined by measuring performance on a validation set.

We note there are several approaches to model the kernel
parameters ω: (a) Static Kernel: the parameters be treated
as hyperparameters, tuned on a validation set along with
ϱ0. (b) Learnable Kernel: alternatively, as the NPP loss
is differentiable w.r.t. ω, these can be estimated via gradi-
ent descent (GD) along with ς. Note that the second term
in Eq. (9) acts as an anisotropic regularization term in this
case. (c) Context-aware Kernel: finally, the kernel param-
eters can be regressed from the input as well. This is par-
ticularly useful in scenarios where each input image may
have distinct underlying spatial structures or correlations,
such as satellite images of different geographic regions.

with mean function (output of the NN)

and kernel function (parametric PSD kernel)

Neural Point Processes for Pixel-wise Regression

Table 1: Common parametric kernels. Inputs x, y are assumed to be in Rd. Note that the RBF/Gaussian kernels are a
special case of the specral mixture kernel.

Name Kernel Function Parameters ω Dimension mω

Linear (Seeger, 2004) k(x, y) = x→AA→y embedding matrix A → Rd→d→
d ↑ d

↑

Polynomial (?) k(x, y) = (x→AA→y + c)d embedding matrix A → Rd→d→
, coeffi-

cient c → R, degree d → N
d ↑ d

↑ + 2

RBF (Seeger, 2004) k(x, y) = exp
(

→ ↑x↓y↑2

2ω2

)
length scale ε 1

Gaussian (?) k(x, y) = |!|
1
2

(2ε)d/2 exp
(

→ (x↓y)↑!(x↓y)
2

)
bandwidth matrix ! → Sd→d d→(d+1)

2

Rational Quadratic (Seeger, 2004) k(x, y) =
(

1 + ↑Ax↓Ay↑2

2ϑω2

)↓ϑ

shape ϑ > 0, length scale ε > 0, em-
bedding matrix A → Rd→d→

d ↑ d
↑ + 2

Spectral mixture (Wilson et al., 2016)
∑Q

q=1 aq
|!q|

1
2

(2ε)d/2 e↓ 1
2 ↑!1/2

q (x↓y)↑2 cos↑x → y, 2ωµq↓ mixture weights aq → [0, 1], diagonal
covariance matrices !q → Sd→d, fre-
quency vectors µq → Rd

Q ↑ (2d + 1)

at test time, the neural network can only make use of the
input x. If, however, we are given both x, and a few la-
beled points, we would like to exploit that information dur-
ing predictions; the neural network trained via Eq. (5) ig-
nores information provided by such labeled points.

4.2 Neural Point Processes

We address these two issues with our proposed neural point
processes, as illustrated in Figure 1b. Intuitively, we treat
the labels at every pixel as a Gaussian Process, whose
means are regressed by the neural network, and whose co-
variance is determined by a (known) kernel. An immediate
consequence is that point labels are now correlated; this not
only leads to a different estimation process than Eq. (5) but
also allows incorporating any available point labels at infer-
ence time in a principled fashion. Consider again a sample
image xi with a corresponding labeled point set (Pi, yi)
given by Eq. (4). We assume that, for point pi → [d1]↑[d2],
the corresponding label yi → R is given by:

yi = gi(pi) + ϖ, (6)

where ϖ ↓ N(0, ϱ
2
0) is i.i.d. noise, and gi(·) is a GP:

gi(·) ↓ GP(mi(·), ki(·, ·)), (7)

whose mean function mi : R2
↔ R and kernel function

ki(·, ·) are given by

mi(p) = fp(xi;ς) → R, ki(p, p↑) = k(p, p↑; ωi),
for p, p↑

→ [d1] ↑ [d2].
(8)

Thus, means are again the projections of the output of a
neural network f : Rd1→d2 ↑ Rmω ↔ Rd1→d2 parameter-
ized by ς, and k(·, ·) is a parametric positive semidefinite
kernel parameterized by ωi → Rmε such as, e.g., the RBF
kernel. Moreover, the kernel parameter may or may not
depend on the image xi as we have three regimes to com-
pute ωi. Additional examples of parametric kernel candi-
dates and their parameters are provided in Table 1. Under

this assumption, we can estimate model parameters from a
dataset D through maximum likelihood estimation (MLE):

Theorem 1. If (a) labels are generated according to
Eq. (6), with i.i.d. noise ϱ0, and (b) GPs gi given by Eq. (7)
are also independent across images, then the maximum
likelihood estimate of ς can be obtained by minimizing

LNPP(ς, ω; D) = 1
2

n∑

i=1

[
log |k(Pi,Pi;ω) + 2ϱ

2
0I|+ (9)

(yi↗fPi(xi; ς))↓(k(Pi,Pi;ω)+ϱ
2
0I)↔1(yi↗fPi(xi; ς))

]
.

where k(Pi,Pi;ω) → RLi→Li is the PSD covariance matrix
of GP gi over points Pi.

The proof can be found in Appendix A in the supplement.
We refer to Eq. (9) as the NPP loss. We observe that, com-
pared to standard MSE (Eq. (5)), which treats all residual
error terms equally in the Euclidean space, the error terms
are measured in the squared Mahalanobis distance, as im-
posed by the kernel/covariance matrix k(Pi, Pi; ω). In-
tuitively, this enforces correlations between the values of
points that are proximal. Parameter ϱ

2
0 that corresponds to

label noise can either be set to a small value, to ensure in-
vertibility or can be treated as a hyperparameter that can be
determined by measuring performance on a validation set.

We note there are several approaches to model the kernel
parameters ω: (a) Static Kernel: the parameters be treated
as hyperparameters, tuned on a validation set along with
ϱ0. (b) Learnable Kernel: alternatively, as the NPP loss
is differentiable w.r.t. ω, these can be estimated via gradi-
ent descent (GD) along with ς. Note that the second term
in Eq. (9) acts as an anisotropic regularization term in this
case. (c) Context-aware Kernel: finally, the kernel param-
eters can be regressed from the input as well. This is par-
ticularly useful in scenarios where each input image may
have distinct underlying spatial structures or correlations,
such as satellite images of different geographic regions.

Neural Point Processes for Pixel-wise Regression

Table 1: Common parametric kernels. Inputs x, y are assumed to be in Rd. Note that the RBF/Gaussian kernels are a
special case of the specral mixture kernel.

Name Kernel Function Parameters ω Dimension mω

Linear (Seeger, 2004) k(x, y) = x→AA→y embedding matrix A → Rd→d→
d ↑ d

↑

Polynomial (?) k(x, y) = (x→AA→y + c)d embedding matrix A → Rd→d→
, coeffi-

cient c → R, degree d → N
d ↑ d

↑ + 2

RBF (Seeger, 2004) k(x, y) = exp
(

→ ↑x↓y↑2

2ω2

)
length scale ε 1

Gaussian (?) k(x, y) = |!|
1
2

(2ε)d/2 exp
(

→ (x↓y)↑!(x↓y)
2

)
bandwidth matrix ! → Sd→d d→(d+1)

2

Rational Quadratic (Seeger, 2004) k(x, y) =
(

1 + ↑Ax↓Ay↑2

2ϑω2

)↓ϑ

shape ϑ > 0, length scale ε > 0, em-
bedding matrix A → Rd→d→

d ↑ d
↑ + 2

Spectral mixture (Wilson et al., 2016)
∑Q

q=1 aq
|!q|

1
2

(2ε)d/2 e↓ 1
2 ↑!1/2

q (x↓y)↑2 cos↑x → y, 2ωµq↓ mixture weights aq → [0, 1], diagonal
covariance matrices !q → Sd→d, fre-
quency vectors µq → Rd

Q ↑ (2d + 1)

at test time, the neural network can only make use of the
input x. If, however, we are given both x, and a few la-
beled points, we would like to exploit that information dur-
ing predictions; the neural network trained via Eq. (5) ig-
nores information provided by such labeled points.

4.2 Neural Point Processes

We address these two issues with our proposed neural point
processes, as illustrated in Figure 1b. Intuitively, we treat
the labels at every pixel as a Gaussian Process, whose
means are regressed by the neural network, and whose co-
variance is determined by a (known) kernel. An immediate
consequence is that point labels are now correlated; this not
only leads to a different estimation process than Eq. (5) but
also allows incorporating any available point labels at infer-
ence time in a principled fashion. Consider again a sample
image xi with a corresponding labeled point set (Pi, yi)
given by Eq. (4). We assume that, for point pi → [d1]↑[d2],
the corresponding label yi → R is given by:

yi = gi(pi) + ϖ, (6)

where ϖ ↓ N(0, ϱ
2
0) is i.i.d. noise, and gi(·) is a GP:

gi(·) ↓ GP(mi(·), ki(·, ·)), (7)

whose mean function mi : R2
↔ R and kernel function

ki(·, ·) are given by

mi(p) = fp(xi;ς) → R, ki(p, p↑) = k(p, p↑; ωi),
for p, p↑

→ [d1] ↑ [d2].
(8)

Thus, means are again the projections of the output of a
neural network f : Rd1→d2 ↑ Rmω ↔ Rd1→d2 parameter-
ized by ς, and k(·, ·) is a parametric positive semidefinite
kernel parameterized by ωi → Rmε such as, e.g., the RBF
kernel. Moreover, the kernel parameter may or may not
depend on the image xi as we have three regimes to com-
pute ωi. Additional examples of parametric kernel candi-
dates and their parameters are provided in Table 1. Under

this assumption, we can estimate model parameters from a
dataset D through maximum likelihood estimation (MLE):

Theorem 1. If (a) labels are generated according to
Eq. (6), with i.i.d. noise ϱ0, and (b) GPs gi given by Eq. (7)
are also independent across images, then the maximum
likelihood estimate of ς can be obtained by minimizing

LNPP(ς, ω; D) = 1
2

n∑

i=1

[
log |k(Pi,Pi;ω) + 2ϱ

2
0I|+ (9)

(yi↗fPi(xi; ς))↓(k(Pi,Pi;ω)+ϱ
2
0I)↔1(yi↗fPi(xi; ς))

]
.

where k(Pi,Pi;ω) → RLi→Li is the PSD covariance matrix
of GP gi over points Pi.

The proof can be found in Appendix A in the supplement.
We refer to Eq. (9) as the NPP loss. We observe that, com-
pared to standard MSE (Eq. (5)), which treats all residual
error terms equally in the Euclidean space, the error terms
are measured in the squared Mahalanobis distance, as im-
posed by the kernel/covariance matrix k(Pi, Pi; ω). In-
tuitively, this enforces correlations between the values of
points that are proximal. Parameter ϱ

2
0 that corresponds to

label noise can either be set to a small value, to ensure in-
vertibility or can be treated as a hyperparameter that can be
determined by measuring performance on a validation set.

We note there are several approaches to model the kernel
parameters ω: (a) Static Kernel: the parameters be treated
as hyperparameters, tuned on a validation set along with
ϱ0. (b) Learnable Kernel: alternatively, as the NPP loss
is differentiable w.r.t. ω, these can be estimated via gradi-
ent descent (GD) along with ς. Note that the second term
in Eq. (9) acts as an anisotropic regularization term in this
case. (c) Context-aware Kernel: finally, the kernel param-
eters can be regressed from the input as well. This is par-
ticularly useful in scenarios where each input image may
have distinct underlying spatial structures or correlations,
such as satellite images of different geographic regions.

 With this setup, we can obtain our MLE of by minimizing:

Shi, Özcan, Sirera Perelló, Li, Shamsi, Ioannidis

rectly predicts labels for an arbitrarily sized subset of pix-
els simultaneously. Finally, and most importantly, models
in the neural process family only operate under the partial
label revelation setting (see Sec. 4.3): they require some
labeled samples to be revealed at inference time in order to
predict remaining labels. This is again in contrast to NPPs,
which can be used even when no such labels are available.

Diffusion models (Sohl-Dickstein et al., 2015; Ho et al.,
2020) reinforce correlations across nearby pixels through
diffusion operations within latent layers. Baranchuk et al.
(2022) propose using the diffusion model as a feature ex-
tractor for semantic segmentation when ground truth labels
are scarce. The authors build a fully connected network
as a pixel-wise classifier fed with pixel-level representa-
tions from a pre-trained Denoising Diffusion Probabilistic
Model (DDPM). Exploiting correlations in the input is or-
thogonal to our approach, which attempts to exploit cor-
relations in the output; to illustrate this, we use DDPMs
(Bandara et al., 2022) as a feature extractor in our imple-
mentation of NPPs during our experimentation.

3 Background: Gaussian Processes

A vector-valued random variable x → Rn is said to have a
multivariate normal (or Gaussian) distribution with mean
µ → Rn and covariance matrix ! → Rn→n (i.e., x ↑

N (µ,!)) if

p(x;µ,!) =
exp

(
↓

1
2 (x ↓ µ)T!↑1(x ↓ µ)

)

(2ω)n/2|!|1/2 , (1)

where ! is a symmetric and positive definite and |!| is
its determinant. A Gaussian Process (GP) is a stochas-
tic process comprising (potentially infinitely many) ran-
dom variables, such that any finite subcollection has a mul-
tivariate Gaussian distribution (Do and Lee, 2020; Ras-
mussen, 2003). Formally, a collection of random variables
{g(x) : x → X } indexed by set X is a GP with mean
function m(·) and a symmetric and positive semi-definite
covariance or kernel function k(·, ·) if for any finite set of
elements x1, . . . , xm → X , the associated finite set of ran-
dom variables g(x1), . . . , g(xm) are jointly distributed as:

[
g(x1)

...
g(xm)

]
↑N

([
m(x1)

...
m(xm)

]
,

[
k(x1,x1) ... k(x1,xm)

...
. . .

...
k(xm,x1) ... k(xm,xm)

])
. (2)

We denote this succinctly via: g(·) ↑ GP(m(·), k(·, ·)).
The above properties imply that, for any x, x↓

→ X ,

m(x) = E[g(x)], (3a)
k(x, x↓) = E[(g(x) ↓ m(x))(g(x↓) ↓ m(x↓))]. (3b)

4 LEARNING NEURAL POINT
PROCESSES

We introduce the problem of sparse pixel-wise regression,
defining first MSE estimation in this context. We then in-
troduce NPPs and apply them to this setting.

4.1 Problem Formulation

For the purposes of our analysis, a point is an element in
R2, and a point set A ↔ R2 is a finite collection of points.1
As illustrated in Figure 1a, we are given images and a set
of labeled points (i.e., pixels) in them: our goal is to regress
the label at any given point from the corresponding source
image. Images could correspond to, e.g., a satellite im-
age of a specific location, or any other 2d representation of
a geographic area (e.g., a temperature or traffic map) and
points could correspond to values of measurements col-
lected at different coordinates (such as, e.g., air pollution,
humidity, cellphone signal quality, etc.) by geographically
dispersed sensors. Formally, we consider a dataset of n

images xi → Rd1→d2 , where i → [n].2 Each image xi is
associated with a labeled point set (Pi, yi), where

Pi = [p(1)
i , . . . , p(Li)

i] and yi = [y(1)
i , . . . , y

(Li)
i]. (4)

Here, p(ω)
i → [d1] ↗ [d2], ε → [Li], are a set of points (i.e.,

image pixels), and y
(ω)
i → R, ε → [Li], are the correspond-

ing labels. Note that each label is indexed by the point (i.e.,
pixel) at which it is measured. We denote the entire dataset
by D = {(xi, Pi, yi)}n

i=1.

A straightforward way to regress labeled point values from
an image is by fitting a neural network via, e.g., a mean
squared error (MSE) loss on the labeled points. Consider
a neural network f : Rd1→d2 ↗ Rmω ↘ Rd1→d2 , parame-
terized by ϑ → Rmω , that receives as input an image x and
produces the values where f(x; ϑ) → Rd1→d2 at all possi-
ble points p → [d1]↗ [d2]. Parameters ϑ can thus be learned
by minimizing:

LMSE(ϑ, D) =
∑n

i=1
∑Li

ω=1
(
f

p(ε)
i

(xi; ϑ) ↓ y
(ω)
i

)2

=
∑n

i=1 ≃fPi(xi; ϑ) ↓ yi≃
2
2,

(5)

where by fPi(·; ·) we denote the restriction/projection of
the output of the neural network to the coordinates Pi.
However, Eq. (5) does not consider potential spatial cor-
relations between nearby points. Such correlations may in-
deed manifest if, e.g., measurements occur at nearby loca-
tions. As a result, the neural network trained thusly might
have a poor bias/variance trade-off, failing to exploit cor-
relations due to proximity. An additional drawback is that,

1This can be thought of an instantiation of a point process (Da-
ley et al., 2003), which is a random map from every subset
S → Rd to N (counting the number of points in this set).

2We use the notation [k] ↑ {1, . . . , k} for k ↓ N.

enforces correlations
between the values of
points that are proximal

Shi, Özcan, Sirera Perelló, Li, Shamsi, Ioannidis

The inclusion of image-dependent kernel prediction thus
equips the model with the flexibility to adapt its learned
representations to diverse data distributions, making it ro-
bust in scenarios with heterogeneous input data. In this
case, each sample is endowed with a different kernel ki pa-
rameterized by ωi, where ωi = f

→(xi; ε
→) for some neural

network f : Rd1↑d2 → Rmω→ ↑ Rmε parameterized by
ε

→
↓ Rmω→ . Regression would then amount to minimizing

Eq. (9) w.r.t. both ε and ε
→, again via GD.

We emphasize that our approach scales gracefully to high-
dimensional inputs (e.g., high-resolution images) because
the GP computation depends primarily on the number of
labeled points L, rather than the total number of pixels;
this is true also about the partial label revelation setting dis-
cussed below. Moreover, the sparse-label setting we study
(L ↔ d1 → d2) is relevant to many distributed sensing ap-
plications. We discuss computational complexity issues in
detail in Appendix B.

4.3 Using Labels Revealed at Test/Inference Time

Using a probabilistic GP as a model allows us to ex-
ploit the presence of labeled points that may be par-
tially revealed at test/inference time. Consider the fol-
lowing partial label revelation setting, in which a few
labels are revealed at certain points in a test image.
We denote by P† and P↓ be the points with revealed
and missing labels in the test image, respectively. The
joint distribution of corresponding labels Y† and Y↓ is:
[
Y†

Y↓

]
↗ N

([
m(P†)
m(P↓)

]
,

[
k(P†

, P†) + ϑ
2
0I k(P†

, P↓)
k(P↓

, P†) k(P↓
, P↓)

])
.

Conditioned on observations Y†, the posterior distribution
of Y↓ is Gaussian with the following mean and covariance:

E[Y↓
|Y†]=m(P↓)+k(P↓

,P†)K↔1
†,†(y†

↘m(P†)), (10a)

cov(Y↓)=k(P↓
,P↓)↘k(P↓

,P†)K↔1
†,†k(P†

,P↓), (10b)

where K†,† ≃ k(P†
,P†) + ϑ

2
0I. Hence, in the presence

of a labeled point set (P†
, Y†), we can combine the esti-

mate produced by the neural network, producing the means
via Eq. (8). Thus, along with the observed values, by ex-
ploiting the available labels, Gaussian Processes can pro-
duce not only a MAP estimate of Y↓ via the expectation
in Eq. (10), but also the full Bayesian posterior, taking the
covariance into account as well.

5 EXPERIMENTS

We compare our proposed NPPs against competitors over
four different datasets (two synthetic and two real-world
datasets). We make our code publicly available. 3

3https://github.com/neu-spiral/
Neural-Point-Processes

Table 2: Dataset configurations. The column n represents
the number of images, d1 and d2 are the height and width
of an image. Lsparse and Ldense are the number of labeled
pins on an image in the sparse and dense setting. We used
five to ten times more labeled points for COWC compared
to Rotterdam due to the larger image sizes.

Dataset Point Distr. n d1 → d2 Lsparse Ldense

Synthetic Heatmaps grid 1000 28 → 28 9 100
random 1000 28 → 28 10 100

PMNIST grid 1000 28 → 28 9 100
random 1000 28 → 28 10 100

Rotterdam grid 1000 100 → 100 16 121
random 1000 100 → 100 10 100

COWC grid 1000 200 → 200 81 529
random 1000 200 → 200 100 500

We summarize our experimental setup here, and provide
additional details in Appendix C. Specifically, we describe
our dataset generation procedures, detailed network archi-
tectures, hyperparameter tuning strategies, hardware and
runtime configurations, and the formulas for all metrics
used. We also provide additional experiments analyzing
the sensitivity to kernel parameters and label sparsity.

5.1 Datasets

Our four datasets are summarized in Table 2. Synthetic
Heatmaps contains synthetic “elevation/heat maps” as in-
puts, and labels on points are determined by a GP parame-
terized by these inputs. Point MNIST (PMNIST) is MNIST
(LeCun et al., 1998) augmented with points dispersed over
the image, with labels measuring the pixel density in a re-
gion around these points. Rotterdam contains satellite im-
ages from the city of Rotterdam; point labels indicate the
density of buildings in the area surrounding each point.
COWC contains satellite images of cars with labels mea-
suring the number of cars within the region of points. Each
dataset is studied under two point distributions, grid and
random, illustrated in Figure 4 in Appendix C. Both are
studied in a sparse (Lsparse) and dense (Ldense) setting, cor-
responding to different numbers of labels L, as described in
Table 2. All datasets are described in detail in Appendix C.

5.2 Algorithms

We implement five different algorithms for regressing point
labels: Plain, i.e., training through the MSE loss in Eq. (5),
Neural Process (NP), the neural processes of Garnelo et al.
(2018b), specifically for the partial label scenario, Convolu-
tional Neural Processes (ConvNP), introduced by Gordon
et al. (2020), which explicitly embed spatial structure, and
compare them to two variants of our approach, NPP and
NPP-GP, corresponding to Eqs. (9) and (10), respectively.
In short, both use the same trained model, but in NPP-GP,
we allow the use of partial labels revealed at test time (see
Sections 4.3 and 5.4.3). Note that our competitor NP can

A quick note on complexity
• Our method’s complexity

will scale with the number of
labeled points, not with the
image size!

Problem Formulation

3 2 4
4 3 4
5 6 5
6 4 3
5 3 2
6 7 5

5 8
5 7
7 6
4 5
3 4
4 3

Labeled
Point Set

Shi, Özcan, Sirera Perelló, Li, Shamsi, Ioannidis

rectly predicts labels for an arbitrarily sized subset of pix-
els simultaneously. Finally, and most importantly, models
in the neural process family only operate under the partial
label revelation setting (see Sec. 4.3): they require some
labeled samples to be revealed at inference time in order to
predict remaining labels. This is again in contrast to NPPs,
which can be used even when no such labels are available.

Diffusion models (Sohl-Dickstein et al., 2015; Ho et al.,
2020) reinforce correlations across nearby pixels through
diffusion operations within latent layers. Baranchuk et al.
(2022) propose using the diffusion model as a feature ex-
tractor for semantic segmentation when ground truth labels
are scarce. The authors build a fully connected network
as a pixel-wise classifier fed with pixel-level representa-
tions from a pre-trained Denoising Diffusion Probabilistic
Model (DDPM). Exploiting correlations in the input is or-
thogonal to our approach, which attempts to exploit cor-
relations in the output; to illustrate this, we use DDPMs
(Bandara et al., 2022) as a feature extractor in our imple-
mentation of NPPs during our experimentation.

3 Background: Gaussian Processes

A vector-valued random variable x → Rn is said to have a
multivariate normal (or Gaussian) distribution with mean
µ → Rn and covariance matrix ! → Rn→n (i.e., x ↑

N (µ,!)) if

p(x;µ,!) =
exp

(
↓

1
2 (x ↓ µ)T!↑1(x ↓ µ)

)

(2ω)n/2|!|1/2 , (1)

where ! is a symmetric and positive definite and |!| is
its determinant. A Gaussian Process (GP) is a stochas-
tic process comprising (potentially infinitely many) ran-
dom variables, such that any finite subcollection has a mul-
tivariate Gaussian distribution (Do and Lee, 2020; Ras-
mussen, 2003). Formally, a collection of random variables
{g(x) : x → X } indexed by set X is a GP with mean
function m(·) and a symmetric and positive semi-definite
covariance or kernel function k(·, ·) if for any finite set of
elements x1, . . . , xm → X , the associated finite set of ran-
dom variables g(x1), . . . , g(xm) are jointly distributed as:

[
g(x1)

...
g(xm)

]
↑N

([
m(x1)

...
m(xm)

]
,

[
k(x1,x1) ... k(x1,xm)

...
. . .

...
k(xm,x1) ... k(xm,xm)

])
. (2)

We denote this succinctly via: g(·) ↑ GP(m(·), k(·, ·)).
The above properties imply that, for any x, x↓

→ X ,

m(x) = E[g(x)], (3a)
k(x, x↓) = E[(g(x) ↓ m(x))(g(x↓) ↓ m(x↓))]. (3b)

4 LEARNING NEURAL POINT
PROCESSES

We introduce the problem of sparse pixel-wise regression,
defining first MSE estimation in this context. We then in-
troduce NPPs and apply them to this setting.

4.1 Problem Formulation

For the purposes of our analysis, a point is an element in
R2, and a point set A ↔ R2 is a finite collection of points.1
As illustrated in Figure 1a, we are given images and a set
of labeled points (i.e., pixels) in them: our goal is to regress
the label at any given point from the corresponding source
image. Images could correspond to, e.g., a satellite im-
age of a specific location, or any other 2d representation of
a geographic area (e.g., a temperature or traffic map) and
points could correspond to values of measurements col-
lected at different coordinates (such as, e.g., air pollution,
humidity, cellphone signal quality, etc.) by geographically
dispersed sensors. Formally, we consider a dataset of n

images xi → Rd1→d2 , where i → [n].2 Each image xi is
associated with a labeled point set (Pi, yi), where

Pi = [p(1)
i , . . . , p(Li)

i] and yi = [y(1)
i , . . . , y

(Li)
i]. (4)

Here, p(ω)
i → [d1] ↗ [d2], ε → [Li], are a set of points (i.e.,

image pixels), and y
(ω)
i → R, ε → [Li], are the correspond-

ing labels. Note that each label is indexed by the point (i.e.,
pixel) at which it is measured. We denote the entire dataset
by D = {(xi, Pi, yi)}n

i=1.

A straightforward way to regress labeled point values from
an image is by fitting a neural network via, e.g., a mean
squared error (MSE) loss on the labeled points. Consider
a neural network f : Rd1→d2 ↗ Rmω ↘ Rd1→d2 , parame-
terized by ϑ → Rmω , that receives as input an image x and
produces the values where f(x; ϑ) → Rd1→d2 at all possi-
ble points p → [d1]↗ [d2]. Parameters ϑ can thus be learned
by minimizing:

LMSE(ϑ, D) =
∑n

i=1
∑Li

ω=1
(
f

p(ε)
i

(xi; ϑ) ↓ y
(ω)
i

)2

=
∑n

i=1 ≃fPi(xi; ϑ) ↓ yi≃
2
2,

(5)

where by fPi(·; ·) we denote the restriction/projection of
the output of the neural network to the coordinates Pi.
However, Eq. (5) does not consider potential spatial cor-
relations between nearby points. Such correlations may in-
deed manifest if, e.g., measurements occur at nearby loca-
tions. As a result, the neural network trained thusly might
have a poor bias/variance trade-off, failing to exploit cor-
relations due to proximity. An additional drawback is that,

1This can be thought of an instantiation of a point process (Da-
ley et al., 2003), which is a random map from every subset
S → Rd to N (counting the number of points in this set).

2We use the notation [k] ↑ {1, . . . , k} for k ↓ N.

 Let the dataset be defined such that each sample consists of an image
x , where , and an associated set of labeled points , detailed below:

Shi, Özcan, Sirera Perelló, Li, Shamsi, Ioannidis

rectly predicts labels for an arbitrarily sized subset of pix-
els simultaneously. Finally, and most importantly, models
in the neural process family only operate under the partial
label revelation setting (see Sec. 4.3): they require some
labeled samples to be revealed at inference time in order to
predict remaining labels. This is again in contrast to NPPs,
which can be used even when no such labels are available.

Diffusion models (Sohl-Dickstein et al., 2015; Ho et al.,
2020) reinforce correlations across nearby pixels through
diffusion operations within latent layers. Baranchuk et al.
(2022) propose using the diffusion model as a feature ex-
tractor for semantic segmentation when ground truth labels
are scarce. The authors build a fully connected network
as a pixel-wise classifier fed with pixel-level representa-
tions from a pre-trained Denoising Diffusion Probabilistic
Model (DDPM). Exploiting correlations in the input is or-
thogonal to our approach, which attempts to exploit cor-
relations in the output; to illustrate this, we use DDPMs
(Bandara et al., 2022) as a feature extractor in our imple-
mentation of NPPs during our experimentation.

3 Background: Gaussian Processes

A vector-valued random variable x → Rn is said to have a
multivariate normal (or Gaussian) distribution with mean
µ → Rn and covariance matrix ! → Rn→n (i.e., x ↑

N (µ,!)) if

p(x;µ,!) =
exp

(
↓

1
2 (x ↓ µ)T!↑1(x ↓ µ)

)

(2ω)n/2|!|1/2 , (1)

where ! is a symmetric and positive definite and |!| is
its determinant. A Gaussian Process (GP) is a stochas-
tic process comprising (potentially infinitely many) ran-
dom variables, such that any finite subcollection has a mul-
tivariate Gaussian distribution (Do and Lee, 2020; Ras-
mussen, 2003). Formally, a collection of random variables
{g(x) : x → X } indexed by set X is a GP with mean
function m(·) and a symmetric and positive semi-definite
covariance or kernel function k(·, ·) if for any finite set of
elements x1, . . . , xm → X , the associated finite set of ran-
dom variables g(x1), . . . , g(xm) are jointly distributed as:

[
g(x1)

...
g(xm)

]
↑N

([
m(x1)

...
m(xm)

]
,

[
k(x1,x1) ... k(x1,xm)

...
. . .

...
k(xm,x1) ... k(xm,xm)

])
. (2)

We denote this succinctly via: g(·) ↑ GP(m(·), k(·, ·)).
The above properties imply that, for any x, x↓

→ X ,

m(x) = E[g(x)], (3a)
k(x, x↓) = E[(g(x) ↓ m(x))(g(x↓) ↓ m(x↓))]. (3b)

4 LEARNING NEURAL POINT
PROCESSES

We introduce the problem of sparse pixel-wise regression,
defining first MSE estimation in this context. We then in-
troduce NPPs and apply them to this setting.

4.1 Problem Formulation

For the purposes of our analysis, a point is an element in
R2, and a point set A ↔ R2 is a finite collection of points.1
As illustrated in Figure 1a, we are given images and a set
of labeled points (i.e., pixels) in them: our goal is to regress
the label at any given point from the corresponding source
image. Images could correspond to, e.g., a satellite im-
age of a specific location, or any other 2d representation of
a geographic area (e.g., a temperature or traffic map) and
points could correspond to values of measurements col-
lected at different coordinates (such as, e.g., air pollution,
humidity, cellphone signal quality, etc.) by geographically
dispersed sensors. Formally, we consider a dataset of n

images xi → Rd1→d2 , where i → [n].2 Each image xi is
associated with a labeled point set (Pi, yi), where

Pi = [p(1)
i , . . . , p(Li)

i] and yi = [y(1)
i , . . . , y

(Li)
i]. (4)

Here, p(ω)
i → [d1] ↗ [d2], ε → [Li], are a set of points (i.e.,

image pixels), and y
(ω)
i → R, ε → [Li], are the correspond-

ing labels. Note that each label is indexed by the point (i.e.,
pixel) at which it is measured. We denote the entire dataset
by D = {(xi, Pi, yi)}n

i=1.

A straightforward way to regress labeled point values from
an image is by fitting a neural network via, e.g., a mean
squared error (MSE) loss on the labeled points. Consider
a neural network f : Rd1→d2 ↗ Rmω ↘ Rd1→d2 , parame-
terized by ϑ → Rmω , that receives as input an image x and
produces the values where f(x; ϑ) → Rd1→d2 at all possi-
ble points p → [d1]↗ [d2]. Parameters ϑ can thus be learned
by minimizing:

LMSE(ϑ, D) =
∑n

i=1
∑Li

ω=1
(
f

p(ε)
i

(xi; ϑ) ↓ y
(ω)
i

)2

=
∑n

i=1 ≃fPi(xi; ϑ) ↓ yi≃
2
2,

(5)

where by fPi(·; ·) we denote the restriction/projection of
the output of the neural network to the coordinates Pi.
However, Eq. (5) does not consider potential spatial cor-
relations between nearby points. Such correlations may in-
deed manifest if, e.g., measurements occur at nearby loca-
tions. As a result, the neural network trained thusly might
have a poor bias/variance trade-off, failing to exploit cor-
relations due to proximity. An additional drawback is that,

1This can be thought of an instantiation of a point process (Da-
ley et al., 2003), which is a random map from every subset
S → Rd to N (counting the number of points in this set).

2We use the notation [k] ↑ {1, . . . , k} for k ↓ N.

Shi, Özcan, Sirera Perelló, Li, Shamsi, Ioannidis

rectly predicts labels for an arbitrarily sized subset of pix-
els simultaneously. Finally, and most importantly, models
in the neural process family only operate under the partial
label revelation setting (see Sec. 4.3): they require some
labeled samples to be revealed at inference time in order to
predict remaining labels. This is again in contrast to NPPs,
which can be used even when no such labels are available.

Diffusion models (Sohl-Dickstein et al., 2015; Ho et al.,
2020) reinforce correlations across nearby pixels through
diffusion operations within latent layers. Baranchuk et al.
(2022) propose using the diffusion model as a feature ex-
tractor for semantic segmentation when ground truth labels
are scarce. The authors build a fully connected network
as a pixel-wise classifier fed with pixel-level representa-
tions from a pre-trained Denoising Diffusion Probabilistic
Model (DDPM). Exploiting correlations in the input is or-
thogonal to our approach, which attempts to exploit cor-
relations in the output; to illustrate this, we use DDPMs
(Bandara et al., 2022) as a feature extractor in our imple-
mentation of NPPs during our experimentation.

3 Background: Gaussian Processes

A vector-valued random variable x → Rn is said to have a
multivariate normal (or Gaussian) distribution with mean
µ → Rn and covariance matrix ! → Rn→n (i.e., x ↑

N (µ,!)) if

p(x;µ,!) =
exp

(
↓

1
2 (x ↓ µ)T!↑1(x ↓ µ)

)

(2ω)n/2|!|1/2 , (1)

where ! is a symmetric and positive definite and |!| is
its determinant. A Gaussian Process (GP) is a stochas-
tic process comprising (potentially infinitely many) ran-
dom variables, such that any finite subcollection has a mul-
tivariate Gaussian distribution (Do and Lee, 2020; Ras-
mussen, 2003). Formally, a collection of random variables
{g(x) : x → X } indexed by set X is a GP with mean
function m(·) and a symmetric and positive semi-definite
covariance or kernel function k(·, ·) if for any finite set of
elements x1, . . . , xm → X , the associated finite set of ran-
dom variables g(x1), . . . , g(xm) are jointly distributed as:

[
g(x1)

...
g(xm)

]
↑N

([
m(x1)

...
m(xm)

]
,

[
k(x1,x1) ... k(x1,xm)

...
. . .

...
k(xm,x1) ... k(xm,xm)

])
. (2)

We denote this succinctly via: g(·) ↑ GP(m(·), k(·, ·)).
The above properties imply that, for any x, x↓

→ X ,

m(x) = E[g(x)], (3a)
k(x, x↓) = E[(g(x) ↓ m(x))(g(x↓) ↓ m(x↓))]. (3b)

4 LEARNING NEURAL POINT
PROCESSES

We introduce the problem of sparse pixel-wise regression,
defining first MSE estimation in this context. We then in-
troduce NPPs and apply them to this setting.

4.1 Problem Formulation

For the purposes of our analysis, a point is an element in
R2, and a point set A ↔ R2 is a finite collection of points.1
As illustrated in Figure 1a, we are given images and a set
of labeled points (i.e., pixels) in them: our goal is to regress
the label at any given point from the corresponding source
image. Images could correspond to, e.g., a satellite im-
age of a specific location, or any other 2d representation of
a geographic area (e.g., a temperature or traffic map) and
points could correspond to values of measurements col-
lected at different coordinates (such as, e.g., air pollution,
humidity, cellphone signal quality, etc.) by geographically
dispersed sensors. Formally, we consider a dataset of n

images xi → Rd1→d2 , where i → [n].2 Each image xi is
associated with a labeled point set (Pi, yi), where

Pi = [p(1)
i , . . . , p(Li)

i] and yi = [y(1)
i , . . . , y

(Li)
i]. (4)

Here, p(ω)
i → [d1] ↗ [d2], ε → [Li], are a set of points (i.e.,

image pixels), and y
(ω)
i → R, ε → [Li], are the correspond-

ing labels. Note that each label is indexed by the point (i.e.,
pixel) at which it is measured. We denote the entire dataset
by D = {(xi, Pi, yi)}n

i=1.

A straightforward way to regress labeled point values from
an image is by fitting a neural network via, e.g., a mean
squared error (MSE) loss on the labeled points. Consider
a neural network f : Rd1→d2 ↗ Rmω ↘ Rd1→d2 , parame-
terized by ϑ → Rmω , that receives as input an image x and
produces the values where f(x; ϑ) → Rd1→d2 at all possi-
ble points p → [d1]↗ [d2]. Parameters ϑ can thus be learned
by minimizing:

LMSE(ϑ, D) =
∑n

i=1
∑Li

ω=1
(
f

p(ε)
i

(xi; ϑ) ↓ y
(ω)
i

)2

=
∑n

i=1 ≃fPi(xi; ϑ) ↓ yi≃
2
2,

(5)

where by fPi(·; ·) we denote the restriction/projection of
the output of the neural network to the coordinates Pi.
However, Eq. (5) does not consider potential spatial cor-
relations between nearby points. Such correlations may in-
deed manifest if, e.g., measurements occur at nearby loca-
tions. As a result, the neural network trained thusly might
have a poor bias/variance trade-off, failing to exploit cor-
relations due to proximity. An additional drawback is that,

1This can be thought of an instantiation of a point process (Da-
ley et al., 2003), which is a random map from every subset
S → Rd to N (counting the number of points in this set).

2We use the notation [k] ↑ {1, . . . , k} for k ↓ N.

Shi, Özcan, Sirera Perelló, Li, Shamsi, Ioannidis

rectly predicts labels for an arbitrarily sized subset of pix-
els simultaneously. Finally, and most importantly, models
in the neural process family only operate under the partial
label revelation setting (see Sec. 4.3): they require some
labeled samples to be revealed at inference time in order to
predict remaining labels. This is again in contrast to NPPs,
which can be used even when no such labels are available.

Diffusion models (Sohl-Dickstein et al., 2015; Ho et al.,
2020) reinforce correlations across nearby pixels through
diffusion operations within latent layers. Baranchuk et al.
(2022) propose using the diffusion model as a feature ex-
tractor for semantic segmentation when ground truth labels
are scarce. The authors build a fully connected network
as a pixel-wise classifier fed with pixel-level representa-
tions from a pre-trained Denoising Diffusion Probabilistic
Model (DDPM). Exploiting correlations in the input is or-
thogonal to our approach, which attempts to exploit cor-
relations in the output; to illustrate this, we use DDPMs
(Bandara et al., 2022) as a feature extractor in our imple-
mentation of NPPs during our experimentation.

3 Background: Gaussian Processes

A vector-valued random variable x → Rn is said to have a
multivariate normal (or Gaussian) distribution with mean
µ → Rn and covariance matrix ! → Rn→n (i.e., x ↑

N (µ,!)) if

p(x;µ,!) =
exp

(
↓

1
2 (x ↓ µ)T!↑1(x ↓ µ)

)

(2ω)n/2|!|1/2 , (1)

where ! is a symmetric and positive definite and |!| is
its determinant. A Gaussian Process (GP) is a stochas-
tic process comprising (potentially infinitely many) ran-
dom variables, such that any finite subcollection has a mul-
tivariate Gaussian distribution (Do and Lee, 2020; Ras-
mussen, 2003). Formally, a collection of random variables
{g(x) : x → X } indexed by set X is a GP with mean
function m(·) and a symmetric and positive semi-definite
covariance or kernel function k(·, ·) if for any finite set of
elements x1, . . . , xm → X , the associated finite set of ran-
dom variables g(x1), . . . , g(xm) are jointly distributed as:

[
g(x1)

...
g(xm)

]
↑N

([
m(x1)

...
m(xm)

]
,

[
k(x1,x1) ... k(x1,xm)

...
. . .

...
k(xm,x1) ... k(xm,xm)

])
. (2)

We denote this succinctly via: g(·) ↑ GP(m(·), k(·, ·)).
The above properties imply that, for any x, x↓

→ X ,

m(x) = E[g(x)], (3a)
k(x, x↓) = E[(g(x) ↓ m(x))(g(x↓) ↓ m(x↓))]. (3b)

4 LEARNING NEURAL POINT
PROCESSES

We introduce the problem of sparse pixel-wise regression,
defining first MSE estimation in this context. We then in-
troduce NPPs and apply them to this setting.

4.1 Problem Formulation

For the purposes of our analysis, a point is an element in
R2, and a point set A ↔ R2 is a finite collection of points.1
As illustrated in Figure 1a, we are given images and a set
of labeled points (i.e., pixels) in them: our goal is to regress
the label at any given point from the corresponding source
image. Images could correspond to, e.g., a satellite im-
age of a specific location, or any other 2d representation of
a geographic area (e.g., a temperature or traffic map) and
points could correspond to values of measurements col-
lected at different coordinates (such as, e.g., air pollution,
humidity, cellphone signal quality, etc.) by geographically
dispersed sensors. Formally, we consider a dataset of n

images xi → Rd1→d2 , where i → [n].2 Each image xi is
associated with a labeled point set (Pi, yi), where

Pi = [p(1)
i , . . . , p(Li)

i] and yi = [y(1)
i , . . . , y

(Li)
i]. (4)

Here, p(ω)
i → [d1] ↗ [d2], ε → [Li], are a set of points (i.e.,

image pixels), and y
(ω)
i → R, ε → [Li], are the correspond-

ing labels. Note that each label is indexed by the point (i.e.,
pixel) at which it is measured. We denote the entire dataset
by D = {(xi, Pi, yi)}n

i=1.

A straightforward way to regress labeled point values from
an image is by fitting a neural network via, e.g., a mean
squared error (MSE) loss on the labeled points. Consider
a neural network f : Rd1→d2 ↗ Rmω ↘ Rd1→d2 , parame-
terized by ϑ → Rmω , that receives as input an image x and
produces the values where f(x; ϑ) → Rd1→d2 at all possi-
ble points p → [d1]↗ [d2]. Parameters ϑ can thus be learned
by minimizing:

LMSE(ϑ, D) =
∑n

i=1
∑Li

ω=1
(
f

p(ε)
i

(xi; ϑ) ↓ y
(ω)
i

)2

=
∑n

i=1 ≃fPi(xi; ϑ) ↓ yi≃
2
2,

(5)

where by fPi(·; ·) we denote the restriction/projection of
the output of the neural network to the coordinates Pi.
However, Eq. (5) does not consider potential spatial cor-
relations between nearby points. Such correlations may in-
deed manifest if, e.g., measurements occur at nearby loca-
tions. As a result, the neural network trained thusly might
have a poor bias/variance trade-off, failing to exploit cor-
relations due to proximity. An additional drawback is that,

1This can be thought of an instantiation of a point process (Da-
ley et al., 2003), which is a random map from every subset
S → Rd to N (counting the number of points in this set).

2We use the notation [k] ↑ {1, . . . , k} for k ↓ N.

Shi, Özcan, Sirera Perelló, Li, Shamsi, Ioannidis

rectly predicts labels for an arbitrarily sized subset of pix-
els simultaneously. Finally, and most importantly, models
in the neural process family only operate under the partial
label revelation setting (see Sec. 4.3): they require some
labeled samples to be revealed at inference time in order to
predict remaining labels. This is again in contrast to NPPs,
which can be used even when no such labels are available.

Diffusion models (Sohl-Dickstein et al., 2015; Ho et al.,
2020) reinforce correlations across nearby pixels through
diffusion operations within latent layers. Baranchuk et al.
(2022) propose using the diffusion model as a feature ex-
tractor for semantic segmentation when ground truth labels
are scarce. The authors build a fully connected network
as a pixel-wise classifier fed with pixel-level representa-
tions from a pre-trained Denoising Diffusion Probabilistic
Model (DDPM). Exploiting correlations in the input is or-
thogonal to our approach, which attempts to exploit cor-
relations in the output; to illustrate this, we use DDPMs
(Bandara et al., 2022) as a feature extractor in our imple-
mentation of NPPs during our experimentation.

3 Background: Gaussian Processes

A vector-valued random variable x → Rn is said to have a
multivariate normal (or Gaussian) distribution with mean
µ → Rn and covariance matrix ! → Rn→n (i.e., x ↑

N (µ,!)) if

p(x;µ,!) =
exp

(
↓

1
2 (x ↓ µ)T!↑1(x ↓ µ)

)

(2ω)n/2|!|1/2 , (1)

where ! is a symmetric and positive definite and |!| is
its determinant. A Gaussian Process (GP) is a stochas-
tic process comprising (potentially infinitely many) ran-
dom variables, such that any finite subcollection has a mul-
tivariate Gaussian distribution (Do and Lee, 2020; Ras-
mussen, 2003). Formally, a collection of random variables
{g(x) : x → X } indexed by set X is a GP with mean
function m(·) and a symmetric and positive semi-definite
covariance or kernel function k(·, ·) if for any finite set of
elements x1, . . . , xm → X , the associated finite set of ran-
dom variables g(x1), . . . , g(xm) are jointly distributed as:

[
g(x1)

...
g(xm)

]
↑N

([
m(x1)

...
m(xm)

]
,

[
k(x1,x1) ... k(x1,xm)

...
. . .

...
k(xm,x1) ... k(xm,xm)

])
. (2)

We denote this succinctly via: g(·) ↑ GP(m(·), k(·, ·)).
The above properties imply that, for any x, x↓

→ X ,

m(x) = E[g(x)], (3a)
k(x, x↓) = E[(g(x) ↓ m(x))(g(x↓) ↓ m(x↓))]. (3b)

4 LEARNING NEURAL POINT
PROCESSES

We introduce the problem of sparse pixel-wise regression,
defining first MSE estimation in this context. We then in-
troduce NPPs and apply them to this setting.

4.1 Problem Formulation

For the purposes of our analysis, a point is an element in
R2, and a point set A ↔ R2 is a finite collection of points.1
As illustrated in Figure 1a, we are given images and a set
of labeled points (i.e., pixels) in them: our goal is to regress
the label at any given point from the corresponding source
image. Images could correspond to, e.g., a satellite im-
age of a specific location, or any other 2d representation of
a geographic area (e.g., a temperature or traffic map) and
points could correspond to values of measurements col-
lected at different coordinates (such as, e.g., air pollution,
humidity, cellphone signal quality, etc.) by geographically
dispersed sensors. Formally, we consider a dataset of n

images xi → Rd1→d2 , where i → [n].2 Each image xi is
associated with a labeled point set (Pi, yi), where

Pi = [p(1)
i , . . . , p(Li)

i] and yi = [y(1)
i , . . . , y

(Li)
i]. (4)

Here, p(ω)
i → [d1] ↗ [d2], ε → [Li], are a set of points (i.e.,

image pixels), and y
(ω)
i → R, ε → [Li], are the correspond-

ing labels. Note that each label is indexed by the point (i.e.,
pixel) at which it is measured. We denote the entire dataset
by D = {(xi, Pi, yi)}n

i=1.

A straightforward way to regress labeled point values from
an image is by fitting a neural network via, e.g., a mean
squared error (MSE) loss on the labeled points. Consider
a neural network f : Rd1→d2 ↗ Rmω ↘ Rd1→d2 , parame-
terized by ϑ → Rmω , that receives as input an image x and
produces the values where f(x; ϑ) → Rd1→d2 at all possi-
ble points p → [d1]↗ [d2]. Parameters ϑ can thus be learned
by minimizing:

LMSE(ϑ, D) =
∑n

i=1
∑Li

ω=1
(
f

p(ε)
i

(xi; ϑ) ↓ y
(ω)
i

)2

=
∑n

i=1 ≃fPi(xi; ϑ) ↓ yi≃
2
2,

(5)

where by fPi(·; ·) we denote the restriction/projection of
the output of the neural network to the coordinates Pi.
However, Eq. (5) does not consider potential spatial cor-
relations between nearby points. Such correlations may in-
deed manifest if, e.g., measurements occur at nearby loca-
tions. As a result, the neural network trained thusly might
have a poor bias/variance trade-off, failing to exploit cor-
relations due to proximity. An additional drawback is that,

1This can be thought of an instantiation of a point process (Da-
ley et al., 2003), which is a random map from every subset
S → Rd to N (counting the number of points in this set).

2We use the notation [k] ↑ {1, . . . , k} for k ↓ N.

 When partial labels are available, we can compute the posterior distribution over predictions for the rest

of the points we want to predict, namely

• Conditioned on observations , the posterior distribution of is Gaussian with the following mean and covariance:

 where

• This provides refined estimates and quantifies uncertainty — a full Bayesian posterior

• Check our Partial Label Revelation Experiments in the results

Shi, Özcan, Sirera Perelló, Li, Shamsi, Ioannidis

The inclusion of image-dependent kernel prediction thus
equips the model with the flexibility to adapt its learned
representations to diverse data distributions, making it ro-
bust in scenarios with heterogeneous input data. In this
case, each sample is endowed with a different kernel ki pa-
rameterized by ωi, where ωi = f

→(xi; ε
→) for some neural

network f : Rd1↑d2 → Rmω→ ↑ Rmε parameterized by
ε

→
↓ Rmω→ . Regression would then amount to minimizing

Eq. (9) w.r.t. both ε and ε
→, again via GD.

We emphasize that our approach scales gracefully to high-
dimensional inputs (e.g., high-resolution images) because
the GP computation depends primarily on the number of
labeled points L, rather than the total number of pixels;
this is true also about the partial label revelation setting dis-
cussed below. Moreover, the sparse-label setting we study
(L ↔ d1 → d2) is relevant to many distributed sensing ap-
plications. We discuss computational complexity issues in
detail in Appendix B.

4.3 Using Labels Revealed at Test/Inference Time

Using a probabilistic GP as a model allows us to ex-
ploit the presence of labeled points that may be par-
tially revealed at test/inference time. Consider the fol-
lowing partial label revelation setting, in which a few
labels are revealed at certain points in a test image.
We denote by P† and P↓ be the points with revealed
and missing labels in the test image, respectively. The
joint distribution of corresponding labels Y† and Y↓ is:
[
Y†

Y↓

]
↗ N

([
m(P†)
m(P↓)

]
,

[
k(P†

, P†) + ϑ
2
0I k(P†

, P↓)
k(P↓

, P†) k(P↓
, P↓)

])
.

Conditioned on observations Y†, the posterior distribution
of Y↓ is Gaussian with the following mean and covariance:

E[Y↓
|Y†]=m(P↓)+k(P↓

,P†)K↔1
†,†(y†

↘m(P†)), (10a)

cov(Y↓)=k(P↓
,P↓)↘k(P↓

,P†)K↔1
†,†k(P†

,P↓), (10b)

where K†,† ≃ k(P†
,P†) + ϑ

2
0I. Hence, in the presence

of a labeled point set (P†
, Y†), we can combine the esti-

mate produced by the neural network, producing the means
via Eq. (8). Thus, along with the observed values, by ex-
ploiting the available labels, Gaussian Processes can pro-
duce not only a MAP estimate of Y↓ via the expectation
in Eq. (10), but also the full Bayesian posterior, taking the
covariance into account as well.

5 EXPERIMENTS

We compare our proposed NPPs against competitors over
four different datasets (two synthetic and two real-world
datasets). We make our code publicly available. 3

3https://github.com/neu-spiral/
Neural-Point-Processes

Table 2: Dataset configurations. The column n represents
the number of images, d1 and d2 are the height and width
of an image. Lsparse and Ldense are the number of labeled
pins on an image in the sparse and dense setting. We used
five to ten times more labeled points for COWC compared
to Rotterdam due to the larger image sizes.

Dataset Point Distr. n d1 → d2 Lsparse Ldense

Synthetic Heatmaps grid 1000 28 → 28 9 100
random 1000 28 → 28 10 100

PMNIST grid 1000 28 → 28 9 100
random 1000 28 → 28 10 100

Rotterdam grid 1000 100 → 100 16 121
random 1000 100 → 100 10 100

COWC grid 1000 200 → 200 81 529
random 1000 200 → 200 100 500

We summarize our experimental setup here, and provide
additional details in Appendix C. Specifically, we describe
our dataset generation procedures, detailed network archi-
tectures, hyperparameter tuning strategies, hardware and
runtime configurations, and the formulas for all metrics
used. We also provide additional experiments analyzing
the sensitivity to kernel parameters and label sparsity.

5.1 Datasets

Our four datasets are summarized in Table 2. Synthetic
Heatmaps contains synthetic “elevation/heat maps” as in-
puts, and labels on points are determined by a GP parame-
terized by these inputs. Point MNIST (PMNIST) is MNIST
(LeCun et al., 1998) augmented with points dispersed over
the image, with labels measuring the pixel density in a re-
gion around these points. Rotterdam contains satellite im-
ages from the city of Rotterdam; point labels indicate the
density of buildings in the area surrounding each point.
COWC contains satellite images of cars with labels mea-
suring the number of cars within the region of points. Each
dataset is studied under two point distributions, grid and
random, illustrated in Figure 4 in Appendix C. Both are
studied in a sparse (Lsparse) and dense (Ldense) setting, cor-
responding to different numbers of labels L, as described in
Table 2. All datasets are described in detail in Appendix C.

5.2 Algorithms

We implement five different algorithms for regressing point
labels: Plain, i.e., training through the MSE loss in Eq. (5),
Neural Process (NP), the neural processes of Garnelo et al.
(2018b), specifically for the partial label scenario, Convolu-
tional Neural Processes (ConvNP), introduced by Gordon
et al. (2020), which explicitly embed spatial structure, and
compare them to two variants of our approach, NPP and
NPP-GP, corresponding to Eqs. (9) and (10), respectively.
In short, both use the same trained model, but in NPP-GP,
we allow the use of partial labels revealed at test time (see
Sections 4.3 and 5.4.3). Note that our competitor NP can

Shi, Özcan, Sirera Perelló, Li, Shamsi, Ioannidis

The inclusion of image-dependent kernel prediction thus
equips the model with the flexibility to adapt its learned
representations to diverse data distributions, making it ro-
bust in scenarios with heterogeneous input data. In this
case, each sample is endowed with a different kernel ki pa-
rameterized by ωi, where ωi = f

→(xi; ε
→) for some neural

network f : Rd1↑d2 → Rmω→ ↑ Rmε parameterized by
ε

→
↓ Rmω→ . Regression would then amount to minimizing

Eq. (9) w.r.t. both ε and ε
→, again via GD.

We emphasize that our approach scales gracefully to high-
dimensional inputs (e.g., high-resolution images) because
the GP computation depends primarily on the number of
labeled points L, rather than the total number of pixels;
this is true also about the partial label revelation setting dis-
cussed below. Moreover, the sparse-label setting we study
(L ↔ d1 → d2) is relevant to many distributed sensing ap-
plications. We discuss computational complexity issues in
detail in Appendix B.

4.3 Using Labels Revealed at Test/Inference Time

Using a probabilistic GP as a model allows us to ex-
ploit the presence of labeled points that may be par-
tially revealed at test/inference time. Consider the fol-
lowing partial label revelation setting, in which a few
labels are revealed at certain points in a test image.
We denote by P† and P↓ be the points with revealed
and missing labels in the test image, respectively. The
joint distribution of corresponding labels Y† and Y↓ is:
[
Y†

Y↓

]
↗ N

([
m(P†)
m(P↓)

]
,

[
k(P†

, P†) + ϑ
2
0I k(P†

, P↓)
k(P↓

, P†) k(P↓
, P↓)

])
.

Conditioned on observations Y†, the posterior distribution
of Y↓ is Gaussian with the following mean and covariance:

E[Y↓
|Y†]=m(P↓)+k(P↓

,P†)K↔1
†,†(y†

↘m(P†)), (10a)

cov(Y↓)=k(P↓
,P↓)↘k(P↓

,P†)K↔1
†,†k(P†

,P↓), (10b)

where K†,† ≃ k(P†
,P†) + ϑ

2
0I. Hence, in the presence

of a labeled point set (P†
, Y†), we can combine the esti-

mate produced by the neural network, producing the means
via Eq. (8). Thus, along with the observed values, by ex-
ploiting the available labels, Gaussian Processes can pro-
duce not only a MAP estimate of Y↓ via the expectation
in Eq. (10), but also the full Bayesian posterior, taking the
covariance into account as well.

5 EXPERIMENTS

We compare our proposed NPPs against competitors over
four different datasets (two synthetic and two real-world
datasets). We make our code publicly available. 3

3https://github.com/neu-spiral/
Neural-Point-Processes

Table 2: Dataset configurations. The column n represents
the number of images, d1 and d2 are the height and width
of an image. Lsparse and Ldense are the number of labeled
pins on an image in the sparse and dense setting. We used
five to ten times more labeled points for COWC compared
to Rotterdam due to the larger image sizes.

Dataset Point Distr. n d1 → d2 Lsparse Ldense

Synthetic Heatmaps grid 1000 28 → 28 9 100
random 1000 28 → 28 10 100

PMNIST grid 1000 28 → 28 9 100
random 1000 28 → 28 10 100

Rotterdam grid 1000 100 → 100 16 121
random 1000 100 → 100 10 100

COWC grid 1000 200 → 200 81 529
random 1000 200 → 200 100 500

We summarize our experimental setup here, and provide
additional details in Appendix C. Specifically, we describe
our dataset generation procedures, detailed network archi-
tectures, hyperparameter tuning strategies, hardware and
runtime configurations, and the formulas for all metrics
used. We also provide additional experiments analyzing
the sensitivity to kernel parameters and label sparsity.

5.1 Datasets

Our four datasets are summarized in Table 2. Synthetic
Heatmaps contains synthetic “elevation/heat maps” as in-
puts, and labels on points are determined by a GP parame-
terized by these inputs. Point MNIST (PMNIST) is MNIST
(LeCun et al., 1998) augmented with points dispersed over
the image, with labels measuring the pixel density in a re-
gion around these points. Rotterdam contains satellite im-
ages from the city of Rotterdam; point labels indicate the
density of buildings in the area surrounding each point.
COWC contains satellite images of cars with labels mea-
suring the number of cars within the region of points. Each
dataset is studied under two point distributions, grid and
random, illustrated in Figure 4 in Appendix C. Both are
studied in a sparse (Lsparse) and dense (Ldense) setting, cor-
responding to different numbers of labels L, as described in
Table 2. All datasets are described in detail in Appendix C.

5.2 Algorithms

We implement five different algorithms for regressing point
labels: Plain, i.e., training through the MSE loss in Eq. (5),
Neural Process (NP), the neural processes of Garnelo et al.
(2018b), specifically for the partial label scenario, Convolu-
tional Neural Processes (ConvNP), introduced by Gordon
et al. (2020), which explicitly embed spatial structure, and
compare them to two variants of our approach, NPP and
NPP-GP, corresponding to Eqs. (9) and (10), respectively.
In short, both use the same trained model, but in NPP-GP,
we allow the use of partial labels revealed at test time (see
Sections 4.3 and 5.4.3). Note that our competitor NP can

Shi, Özcan, Sirera Perelló, Li, Shamsi, Ioannidis

The inclusion of image-dependent kernel prediction thus
equips the model with the flexibility to adapt its learned
representations to diverse data distributions, making it ro-
bust in scenarios with heterogeneous input data. In this
case, each sample is endowed with a different kernel ki pa-
rameterized by ωi, where ωi = f

→(xi; ε
→) for some neural

network f : Rd1↑d2 → Rmω→ ↑ Rmε parameterized by
ε

→
↓ Rmω→ . Regression would then amount to minimizing

Eq. (9) w.r.t. both ε and ε
→, again via GD.

We emphasize that our approach scales gracefully to high-
dimensional inputs (e.g., high-resolution images) because
the GP computation depends primarily on the number of
labeled points L, rather than the total number of pixels;
this is true also about the partial label revelation setting dis-
cussed below. Moreover, the sparse-label setting we study
(L ↔ d1 → d2) is relevant to many distributed sensing ap-
plications. We discuss computational complexity issues in
detail in Appendix B.

4.3 Using Labels Revealed at Test/Inference Time

Using a probabilistic GP as a model allows us to ex-
ploit the presence of labeled points that may be par-
tially revealed at test/inference time. Consider the fol-
lowing partial label revelation setting, in which a few
labels are revealed at certain points in a test image.
We denote by P† and P↓ be the points with revealed
and missing labels in the test image, respectively. The
joint distribution of corresponding labels Y† and Y↓ is:
[
Y†

Y↓

]
↗ N

([
m(P†)
m(P↓)

]
,

[
k(P†

, P†) + ϑ
2
0I k(P†

, P↓)
k(P↓

, P†) k(P↓
, P↓)

])
.

Conditioned on observations Y†, the posterior distribution
of Y↓ is Gaussian with the following mean and covariance:

E[Y↓
|Y†]=m(P↓)+k(P↓

,P†)K↔1
†,†(y†

↘m(P†)), (10a)

cov(Y↓)=k(P↓
,P↓)↘k(P↓

,P†)K↔1
†,†k(P†

,P↓), (10b)

where K†,† ≃ k(P†
,P†) + ϑ

2
0I. Hence, in the presence

of a labeled point set (P†
, Y†), we can combine the esti-

mate produced by the neural network, producing the means
via Eq. (8). Thus, along with the observed values, by ex-
ploiting the available labels, Gaussian Processes can pro-
duce not only a MAP estimate of Y↓ via the expectation
in Eq. (10), but also the full Bayesian posterior, taking the
covariance into account as well.

5 EXPERIMENTS

We compare our proposed NPPs against competitors over
four different datasets (two synthetic and two real-world
datasets). We make our code publicly available. 3

3https://github.com/neu-spiral/
Neural-Point-Processes

Table 2: Dataset configurations. The column n represents
the number of images, d1 and d2 are the height and width
of an image. Lsparse and Ldense are the number of labeled
pins on an image in the sparse and dense setting. We used
five to ten times more labeled points for COWC compared
to Rotterdam due to the larger image sizes.

Dataset Point Distr. n d1 → d2 Lsparse Ldense

Synthetic Heatmaps grid 1000 28 → 28 9 100
random 1000 28 → 28 10 100

PMNIST grid 1000 28 → 28 9 100
random 1000 28 → 28 10 100

Rotterdam grid 1000 100 → 100 16 121
random 1000 100 → 100 10 100

COWC grid 1000 200 → 200 81 529
random 1000 200 → 200 100 500

We summarize our experimental setup here, and provide
additional details in Appendix C. Specifically, we describe
our dataset generation procedures, detailed network archi-
tectures, hyperparameter tuning strategies, hardware and
runtime configurations, and the formulas for all metrics
used. We also provide additional experiments analyzing
the sensitivity to kernel parameters and label sparsity.

5.1 Datasets

Our four datasets are summarized in Table 2. Synthetic
Heatmaps contains synthetic “elevation/heat maps” as in-
puts, and labels on points are determined by a GP parame-
terized by these inputs. Point MNIST (PMNIST) is MNIST
(LeCun et al., 1998) augmented with points dispersed over
the image, with labels measuring the pixel density in a re-
gion around these points. Rotterdam contains satellite im-
ages from the city of Rotterdam; point labels indicate the
density of buildings in the area surrounding each point.
COWC contains satellite images of cars with labels mea-
suring the number of cars within the region of points. Each
dataset is studied under two point distributions, grid and
random, illustrated in Figure 4 in Appendix C. Both are
studied in a sparse (Lsparse) and dense (Ldense) setting, cor-
responding to different numbers of labels L, as described in
Table 2. All datasets are described in detail in Appendix C.

5.2 Algorithms

We implement five different algorithms for regressing point
labels: Plain, i.e., training through the MSE loss in Eq. (5),
Neural Process (NP), the neural processes of Garnelo et al.
(2018b), specifically for the partial label scenario, Convolu-
tional Neural Processes (ConvNP), introduced by Gordon
et al. (2020), which explicitly embed spatial structure, and
compare them to two variants of our approach, NPP and
NPP-GP, corresponding to Eqs. (9) and (10), respectively.
In short, both use the same trained model, but in NPP-GP,
we allow the use of partial labels revealed at test time (see
Sections 4.3 and 5.4.3). Note that our competitor NP can

Shi, Özcan, Sirera Perelló, Li, Shamsi, Ioannidis

The inclusion of image-dependent kernel prediction thus
equips the model with the flexibility to adapt its learned
representations to diverse data distributions, making it ro-
bust in scenarios with heterogeneous input data. In this
case, each sample is endowed with a different kernel ki pa-
rameterized by ωi, where ωi = f

→(xi; ε
→) for some neural

network f : Rd1↑d2 → Rmω→ ↑ Rmε parameterized by
ε

→
↓ Rmω→ . Regression would then amount to minimizing

Eq. (9) w.r.t. both ε and ε
→, again via GD.

We emphasize that our approach scales gracefully to high-
dimensional inputs (e.g., high-resolution images) because
the GP computation depends primarily on the number of
labeled points L, rather than the total number of pixels;
this is true also about the partial label revelation setting dis-
cussed below. Moreover, the sparse-label setting we study
(L ↔ d1 → d2) is relevant to many distributed sensing ap-
plications. We discuss computational complexity issues in
detail in Appendix B.

4.3 Using Labels Revealed at Test/Inference Time

Using a probabilistic GP as a model allows us to ex-
ploit the presence of labeled points that may be par-
tially revealed at test/inference time. Consider the fol-
lowing partial label revelation setting, in which a few
labels are revealed at certain points in a test image.
We denote by P† and P↓ be the points with revealed
and missing labels in the test image, respectively. The
joint distribution of corresponding labels Y† and Y↓ is:
[
Y†

Y↓

]
↗ N

([
m(P†)
m(P↓)

]
,

[
k(P†

, P†) + ϑ
2
0I k(P†

, P↓)
k(P↓

, P†) k(P↓
, P↓)

])
.

Conditioned on observations Y†, the posterior distribution
of Y↓ is Gaussian with the following mean and covariance:

E[Y↓
|Y†]=m(P↓)+k(P↓

,P†)K↔1
†,†(y†

↘m(P†)), (10a)

cov(Y↓)=k(P↓
,P↓)↘k(P↓

,P†)K↔1
†,†k(P†

,P↓), (10b)

where K†,† ≃ k(P†
,P†) + ϑ

2
0I. Hence, in the presence

of a labeled point set (P†
, Y†), we can combine the esti-

mate produced by the neural network, producing the means
via Eq. (8). Thus, along with the observed values, by ex-
ploiting the available labels, Gaussian Processes can pro-
duce not only a MAP estimate of Y↓ via the expectation
in Eq. (10), but also the full Bayesian posterior, taking the
covariance into account as well.

5 EXPERIMENTS

We compare our proposed NPPs against competitors over
four different datasets (two synthetic and two real-world
datasets). We make our code publicly available. 3

3https://github.com/neu-spiral/
Neural-Point-Processes

Table 2: Dataset configurations. The column n represents
the number of images, d1 and d2 are the height and width
of an image. Lsparse and Ldense are the number of labeled
pins on an image in the sparse and dense setting. We used
five to ten times more labeled points for COWC compared
to Rotterdam due to the larger image sizes.

Dataset Point Distr. n d1 → d2 Lsparse Ldense

Synthetic Heatmaps grid 1000 28 → 28 9 100
random 1000 28 → 28 10 100

PMNIST grid 1000 28 → 28 9 100
random 1000 28 → 28 10 100

Rotterdam grid 1000 100 → 100 16 121
random 1000 100 → 100 10 100

COWC grid 1000 200 → 200 81 529
random 1000 200 → 200 100 500

We summarize our experimental setup here, and provide
additional details in Appendix C. Specifically, we describe
our dataset generation procedures, detailed network archi-
tectures, hyperparameter tuning strategies, hardware and
runtime configurations, and the formulas for all metrics
used. We also provide additional experiments analyzing
the sensitivity to kernel parameters and label sparsity.

5.1 Datasets

Our four datasets are summarized in Table 2. Synthetic
Heatmaps contains synthetic “elevation/heat maps” as in-
puts, and labels on points are determined by a GP parame-
terized by these inputs. Point MNIST (PMNIST) is MNIST
(LeCun et al., 1998) augmented with points dispersed over
the image, with labels measuring the pixel density in a re-
gion around these points. Rotterdam contains satellite im-
ages from the city of Rotterdam; point labels indicate the
density of buildings in the area surrounding each point.
COWC contains satellite images of cars with labels mea-
suring the number of cars within the region of points. Each
dataset is studied under two point distributions, grid and
random, illustrated in Figure 4 in Appendix C. Both are
studied in a sparse (Lsparse) and dense (Ldense) setting, cor-
responding to different numbers of labels L, as described in
Table 2. All datasets are described in detail in Appendix C.

5.2 Algorithms

We implement five different algorithms for regressing point
labels: Plain, i.e., training through the MSE loss in Eq. (5),
Neural Process (NP), the neural processes of Garnelo et al.
(2018b), specifically for the partial label scenario, Convolu-
tional Neural Processes (ConvNP), introduced by Gordon
et al. (2020), which explicitly embed spatial structure, and
compare them to two variants of our approach, NPP and
NPP-GP, corresponding to Eqs. (9) and (10), respectively.
In short, both use the same trained model, but in NPP-GP,
we allow the use of partial labels revealed at test time (see
Sections 4.3 and 5.4.3). Note that our competitor NP can

<latexit sha1_base64="UBmQB5rwBB8GaRQLor8eXsEQ5R4=">AAACBnicbVDLSgMxFL1TX7W+Rl2KECxCFSkzItVl0Y3LCvYh7VgyaaaGZh4kGaEMXbnxV9y4UMSt3+DOvzHTjqCtBwLnnnMvufe4EWdSWdaXkZubX1hcyi8XVlbX1jfMza2GDGNBaJ2EPBQtF0vKWUDriilOW5Gg2Hc5bbqDi9Rv3lMhWRhcq2FEHR/3A+YxgpWWuuZuqeNjded6SW10e3iEfqobXR0UumbRKltjoFliZ6QIGWpd87PTC0ns00ARjqVs21aknAQLxQino0InljTCZID7tK1pgH0qnWR8xgjta6WHvFDoFyg0Vn9PJNiXcui7ujPdUk57qfif146Vd+YkLIhiRQMy+ciLOVIhSjNBPSYoUXyoCSaC6V0RucMCE6WTS0Owp0+eJY3jsl0pV65OitXzLI487MAelMCGU6jCJdSgDgQe4Ale4NV4NJ6NN+N90pozsplt+APj4xtVYpfE</latexit>

(P→,Y→)

Shi, Özcan, Sirera Perelló, Li, Shamsi, Ioannidis

The inclusion of image-dependent kernel prediction thus
equips the model with the flexibility to adapt its learned
representations to diverse data distributions, making it ro-
bust in scenarios with heterogeneous input data. In this
case, each sample is endowed with a different kernel ki pa-
rameterized by ωi, where ωi = f

→(xi; ε
→) for some neural

network f : Rd1↑d2 → Rmω→ ↑ Rmε parameterized by
ε

→
↓ Rmω→ . Regression would then amount to minimizing

Eq. (9) w.r.t. both ε and ε
→, again via GD.

We emphasize that our approach scales gracefully to high-
dimensional inputs (e.g., high-resolution images) because
the GP computation depends primarily on the number of
labeled points L, rather than the total number of pixels;
this is true also about the partial label revelation setting dis-
cussed below. Moreover, the sparse-label setting we study
(L ↔ d1 → d2) is relevant to many distributed sensing ap-
plications. We discuss computational complexity issues in
detail in Appendix B.

4.3 Using Labels Revealed at Test/Inference Time

Using a probabilistic GP as a model allows us to ex-
ploit the presence of labeled points that may be par-
tially revealed at test/inference time. Consider the fol-
lowing partial label revelation setting, in which a few
labels are revealed at certain points in a test image.
We denote by P† and P↓ be the points with revealed
and missing labels in the test image, respectively. The
joint distribution of corresponding labels Y† and Y↓ is:
[
Y†

Y↓

]
↗ N

([
m(P†)
m(P↓)

]
,

[
k(P†

, P†) + ϑ
2
0I k(P†

, P↓)
k(P↓

, P†) k(P↓
, P↓)

])
.

Conditioned on observations Y†, the posterior distribution
of Y↓ is Gaussian with the following mean and covariance:

E[Y↓
|Y†]=m(P↓)+k(P↓

,P†)K↔1
†,†(y†

↘m(P†)), (10a)

cov(Y↓)=k(P↓
,P↓)↘k(P↓

,P†)K↔1
†,†k(P†

,P↓), (10b)

where K†,† ≃ k(P†
,P†) + ϑ

2
0I. Hence, in the presence

of a labeled point set (P†
, Y†), we can combine the esti-

mate produced by the neural network, producing the means
via Eq. (8). Thus, along with the observed values, by ex-
ploiting the available labels, Gaussian Processes can pro-
duce not only a MAP estimate of Y↓ via the expectation
in Eq. (10), but also the full Bayesian posterior, taking the
covariance into account as well.

5 EXPERIMENTS

We compare our proposed NPPs against competitors over
four different datasets (two synthetic and two real-world
datasets). We make our code publicly available. 3

3https://github.com/neu-spiral/
Neural-Point-Processes

Table 2: Dataset configurations. The column n represents
the number of images, d1 and d2 are the height and width
of an image. Lsparse and Ldense are the number of labeled
pins on an image in the sparse and dense setting. We used
five to ten times more labeled points for COWC compared
to Rotterdam due to the larger image sizes.

Dataset Point Distr. n d1 → d2 Lsparse Ldense

Synthetic Heatmaps grid 1000 28 → 28 9 100
random 1000 28 → 28 10 100

PMNIST grid 1000 28 → 28 9 100
random 1000 28 → 28 10 100

Rotterdam grid 1000 100 → 100 16 121
random 1000 100 → 100 10 100

COWC grid 1000 200 → 200 81 529
random 1000 200 → 200 100 500

We summarize our experimental setup here, and provide
additional details in Appendix C. Specifically, we describe
our dataset generation procedures, detailed network archi-
tectures, hyperparameter tuning strategies, hardware and
runtime configurations, and the formulas for all metrics
used. We also provide additional experiments analyzing
the sensitivity to kernel parameters and label sparsity.

5.1 Datasets

Our four datasets are summarized in Table 2. Synthetic
Heatmaps contains synthetic “elevation/heat maps” as in-
puts, and labels on points are determined by a GP parame-
terized by these inputs. Point MNIST (PMNIST) is MNIST
(LeCun et al., 1998) augmented with points dispersed over
the image, with labels measuring the pixel density in a re-
gion around these points. Rotterdam contains satellite im-
ages from the city of Rotterdam; point labels indicate the
density of buildings in the area surrounding each point.
COWC contains satellite images of cars with labels mea-
suring the number of cars within the region of points. Each
dataset is studied under two point distributions, grid and
random, illustrated in Figure 4 in Appendix C. Both are
studied in a sparse (Lsparse) and dense (Ldense) setting, cor-
responding to different numbers of labels L, as described in
Table 2. All datasets are described in detail in Appendix C.

5.2 Algorithms

We implement five different algorithms for regressing point
labels: Plain, i.e., training through the MSE loss in Eq. (5),
Neural Process (NP), the neural processes of Garnelo et al.
(2018b), specifically for the partial label scenario, Convolu-
tional Neural Processes (ConvNP), introduced by Gordon
et al. (2020), which explicitly embed spatial structure, and
compare them to two variants of our approach, NPP and
NPP-GP, corresponding to Eqs. (9) and (10), respectively.
In short, both use the same trained model, but in NPP-GP,
we allow the use of partial labels revealed at test time (see
Sections 4.3 and 5.4.3). Note that our competitor NP can

<latexit sha1_base64="UBmQB5rwBB8GaRQLor8eXsEQ5R4=">AAACBnicbVDLSgMxFL1TX7W+Rl2KECxCFSkzItVl0Y3LCvYh7VgyaaaGZh4kGaEMXbnxV9y4UMSt3+DOvzHTjqCtBwLnnnMvufe4EWdSWdaXkZubX1hcyi8XVlbX1jfMza2GDGNBaJ2EPBQtF0vKWUDriilOW5Gg2Hc5bbqDi9Rv3lMhWRhcq2FEHR/3A+YxgpWWuuZuqeNjded6SW10e3iEfqobXR0UumbRKltjoFliZ6QIGWpd87PTC0ns00ARjqVs21aknAQLxQino0InljTCZID7tK1pgH0qnWR8xgjta6WHvFDoFyg0Vn9PJNiXcui7ujPdUk57qfif146Vd+YkLIhiRQMy+ciLOVIhSjNBPSYoUXyoCSaC6V0RucMCE6WTS0Owp0+eJY3jsl0pV65OitXzLI487MAelMCGU6jCJdSgDgQe4Ale4NV4NJ6NN+N90pozsplt+APj4xtVYpfE</latexit>

(P→,Y→)

Sample Image A Plain (grid) NPP (grid) Plain (random) NPP (random)

• Heatmaps from NPP
better align with car-
dense areas like parking
lots and building edges

 We compare predictions
from different models on
two sample test images
from the COWC dataset
(car counts per pixel)

Sample Image A Plain (grid) NPP (grid) Plain (random) NPP (random)

