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functions of their inputs, while neural processes combine
deep neural networks (DNNs) with GPs; neither have been
directly applied to the sparse pixel label setting we con-
sider here. We build upon and extend this long line of work
by introducing Neural Point Processes (NPPs), illustrated
in Figure 1b. In our setting, a DNN model regresses the
labels assigned at a handful of pixels scattered across the
image, which we refer to as points, from the image itself.
Crucially, it does so by exploiting spatial correlations be-
tween points through the imposition of a GP structure on
the DNN’s output: this improves predictive performance
and also enables us to improve predictions by leveraging
partial labels available at inference time. To summarize,
our contributions are as follows:

• We study pixel-wise regression via sparsely labeled
points rather than the whole image and propose Neu-
ral Point Processes as a solution to point-based pixel-
wise regression. NPPs naturally combine GPs with
DNNs, explicitly imposing spatial correlations. In
this setting, we show that maximum likelihood esti-
mation (MLE) amounts to minimizing a Mahalanobis
distance variant of the mean squared error loss, along
with an appropriate kernel-dependent regularization
term.

• Exploiting the ability to compute GP posteriors, we
show how GPs can be used to improve predictions of
NPPs if a small number of point labels are available at
inference time.

• We experiment with two synthetic and two real-world
datasets: PMNIST, Synthetic, SpaceNet (Rotterdam),
and Cars Overhead With Context (COWC). We show
that NPPs outperform competitors under different
point distribution densities and patterns. On the real-
world dataset COWC, we achieve an R2 of 0.769 with
81/40000 (0.2%) points labeled, while standard re-
gression loss (MSE) fails with an R2 of 0.060.

The remainder of this paper is organized as follows: In Sec-
tion 2, we present an overview of the related literature. In
Section 3, we give the necessary background information
on Gaussian Processes. In Section 4, we formally state our
objective problem and explain our main contributions in
detail. We describe our experimental setup and numerical
results on different datasets in Section 5. Finally, we finish
the paper with concluding remarks in Section 6.

2 RELATED WORK

The integration of GPs with DNNs induces various ad-
vantages, such as capturing uncertainty and incorporat-
ing prior knowledge (Damianou and Lawrence, 2013; Bui
et al., 2016; Cutajar et al., 2017; You et al., 2017). Hin-
ton and Salakhutdinov (2007) use deep-belief networks to

learn the covariance matrix to improve the performance of
GPs. Damianou and Lawrence (2013) propose a deep hi-
erarchy in which every layer constitutes a GP, with inputs
being the values of the previous layer, whose parameters
are learned through variational inference. Dutordoir et al.
(2021) show that the forward passes of neural networks are
equivalent to sparse Gaussian process models. Calandra
et al. (2014) jointly learn a feature map and a GP regression
over observations to improve the learnability of complex
and non-differentiable functions. Wilson et al. (2016) intro-
duce scalable deep kernels, which transform the inputs of
a spectral mixture kernel with a deep architecture, benefit-
ing in expressive power and scalability. Similarly, to scale
GPs, Huang et al. (2015) pretrain a denoising autoencoder,
then extract the embeddings from the last layer of a DNN
and regress a Gaussian process on these embeddings. In
the context of satellite images, Tanaka et al. (2019) propose
spatially aggregated GPs, an appropriately defined mixture
model of GPs, to regress areal data, i.e., values assigned to
entire geographic regions (e.g., counties), rather than pix-
els. You et al. (2017) predict future crop yields from multi-
spectral images; training first RNNs or DNNs as feature ex-
tractors, latent representations of images are used as inputs
to GPs that regress crop yields in different areas, thereby
modeling correlations across areas. All the above methods
output an image-level prediction; thus, none of these ap-
proaches can be directly applied to the sparse point/pixel
label setting we study here.

Neural Processes (Garnelo et al., 2018a,b) and their exten-
sions (Louizos et al., 2019; Kim et al., 2018; Nguyen and
Grover, 2022) are closer to our setting. Neural Processes
comprise an encoder, that learns a latent embedding from
a dataset with input and output pairs, and a decoder, that
is used to predict labels over new input vectors. Similar
to our approach, NPs make the output of the decoder the
mean function of GPs and optimize the model by maxi-
mizing the Evidence Lower Bound (ELBO). Convolutional
Neural Processes (ConvNP) (Gordon et al., 2020; Foong
et al., 2020; Bruinsma et al., 2021) extend the NP family by
explicitly embedding spatial structure with convolutional
layers, thereby enhancing the modeling of nearby points,
while “in context in context learning” (Ashman et al., 2024)
allows an NP encoder to also exploit external input/output
pairs from similar datasets.

Several key differences render the Neural Process family
(Dubois et al., 2020), including the extentions above, un-
suitable for our sparse point-wise regression setup. First,
these models only take coordinates as input: they learn the
mapping from locations to label values only, thereby ne-
glecting the rich information contained in image values;
incorporating image data as an additional input, as we do
here, is not straightforward. Second, they output one value
at a time, which limits their computational efficiency in
pixel-wise regression tasks; in contrast, our approach di-
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rectly predicts labels for an arbitrarily sized subset of pix-
els simultaneously. Finally, and most importantly, models
in the neural process family only operate under the partial
label revelation setting (see Sec. 4.3): they require some
labeled samples to be revealed at inference time in order to
predict remaining labels. This is again in contrast to NPPs,
which can be used even when no such labels are available.

Diffusion models (Sohl-Dickstein et al., 2015; Ho et al.,
2020) reinforce correlations across nearby pixels through
diffusion operations within latent layers. Baranchuk et al.
(2022) propose using the diffusion model as a feature ex-
tractor for semantic segmentation when ground truth labels
are scarce. The authors build a fully connected network
as a pixel-wise classifier fed with pixel-level representa-
tions from a pre-trained Denoising Diffusion Probabilistic
Model (DDPM). Exploiting correlations in the input is or-
thogonal to our approach, which attempts to exploit cor-
relations in the output; to illustrate this, we use DDPMs
(Bandara et al., 2022) as a feature extractor in our imple-
mentation of NPPs during our experimentation.

3 Background: Gaussian Processes

A vector-valued random variable x ∈ Rn is said to have a
multivariate normal (or Gaussian) distribution with mean
µ ∈ Rn and covariance matrix Σ ∈ Rn×n (i.e., x ∼
N (µ,Σ)) if

p(x;µ,Σ) =
exp

(
− 1

2 (x − µ)TΣ−1(x − µ)
)

(2π)n/2|Σ|1/2 , (1)

where Σ is a symmetric and positive definite and |Σ| is
its determinant. A Gaussian Process (GP) is a stochas-
tic process comprising (potentially infinitely many) ran-
dom variables, such that any finite subcollection has a mul-
tivariate Gaussian distribution (Do and Lee, 2020; Ras-
mussen, 2003). Formally, a collection of random variables
{g(x) : x ∈ X } indexed by set X is a GP with mean
function m(·) and a symmetric and positive semi-definite
covariance or kernel function k(·, ·) if for any finite set of
elements x1, . . . , xm ∈ X , the associated finite set of ran-
dom variables g(x1), . . . , g(xm) are jointly distributed as:

[
g(x1)

...
g(xm)

]
∼N

([
m(x1)

...
m(xm)

]
,

[
k(x1,x1) ... k(x1,xm)

...
. . .

...
k(xm,x1) ... k(xm,xm)

])
. (2)

We denote this succinctly via: g(·) ∼ GP(m(·), k(·, ·)).
The above properties imply that, for any x, x′ ∈ X ,

m(x) = E[g(x)], (3a)
k(x, x′) = E[(g(x) − m(x))(g(x′) − m(x′))]. (3b)

4 LEARNING NEURAL POINT
PROCESSES

We introduce the problem of sparse pixel-wise regression,
defining first MSE estimation in this context. We then in-
troduce NPPs and apply them to this setting.

4.1 Problem Formulation

For the purposes of our analysis, a point is an element in
R2, and a point set A ⊂ R2 is a finite collection of points.1

As illustrated in Figure 1a, we are given images and a set
of labeled points (i.e., pixels) in them: our goal is to regress
the label at any given point from the corresponding source
image. Images could correspond to, e.g., a satellite im-
age of a specific location, or any other 2d representation of
a geographic area (e.g., a temperature or traffic map) and
points could correspond to values of measurements col-
lected at different coordinates (such as, e.g., air pollution,
humidity, cellphone signal quality, etc.) by geographically
dispersed sensors. Formally, we consider a dataset of n
images xi ∈ Rd1×d2 , where i ∈ [n].2 Each image xi is
associated with a labeled point set (Pi, yi), where

Pi = [p(1)
i , . . . , p(Li)

i ] and yi = [y(1)
i , . . . , y

(Li)
i ]. (4)

Here, p(ℓ)
i ∈ [d1] × [d2], ℓ ∈ [Li], are a set of points (i.e.,

image pixels), and y
(ℓ)
i ∈ R, ℓ ∈ [Li], are the correspond-

ing labels. Note that each label is indexed by the point (i.e.,
pixel) at which it is measured. We denote the entire dataset
by D = {(xi, Pi, yi)}n

i=1.

A straightforward way to regress labeled point values from
an image is by fitting a neural network via, e.g., a mean
squared error (MSE) loss on the labeled points. Consider
a neural network f : Rd1×d2 × Rmθ → Rd1×d2 , parame-
terized by θ ∈ Rmθ , that receives as input an image x and
produces the values where f(x; θ) ∈ Rd1×d2 at all possi-
ble points p ∈ [d1]× [d2]. Parameters θ can thus be learned
by minimizing:

LMSE(θ, D) =
∑n

i=1
∑Li

ℓ=1
(
f

p
(ℓ)
i

(xi; θ) − y
(ℓ)
i

)2

=
∑n

i=1 ∥fPi(xi; θ) − yi∥2
2,

(5)

where by fPi
(·; ·) we denote the restriction/projection of

the output of the neural network to the coordinates Pi.
However, Eq. (5) does not consider potential spatial cor-
relations between nearby points. Such correlations may in-
deed manifest if, e.g., measurements occur at nearby loca-
tions. As a result, the neural network trained thusly might
have a poor bias/variance trade-off, failing to exploit cor-
relations due to proximity. An additional drawback is that,

1This can be thought of an instantiation of a point process (Da-
ley et al., 2003), which is a random map from every subset
S ⊂ Rd to N (counting the number of points in this set).

2We use the notation [k] ≡ {1, . . . , k} for k ∈ N.
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Table 1: Common parametric kernels. Inputs x, y are assumed to be in Rd. Note that the RBF/Gaussian kernels are a
special case of the specral mixture kernel.

Name Kernel Function Parameters ζ Dimension mζ

Linear (Seeger, 2004) k(x, y) = x⊤AA⊤y embedding matrix A ∈ Rd×d′
d × d′

Polynomial (?) k(x, y) = (x⊤AA⊤y + c)d embedding matrix A ∈ Rd×d′
, coeffi-

cient c ∈ R, degree d ∈ N
d × d′ + 2

RBF (Seeger, 2004) k(x, y) = exp
(

− ∥x−y∥2

2ℓ2

)
length scale ℓ 1

Gaussian (?) k(x, y) = |Σ|
1
2

(2π)d/2 exp
(

− (x−y)⊤Σ(x−y)
2

)
bandwidth matrix Σ ∈ Sd×d d×(d+1)

2

Rational Quadratic (Seeger, 2004) k(x, y) =
(

1 + ∥Ax−Ay∥2

2αℓ2

)−α

shape α > 0, length scale ℓ > 0, em-
bedding matrix A ∈ Rd×d′

d × d′ + 2

Spectral mixture (Wilson et al., 2016)
∑Q

q=1 aq
|Σq|

1
2

(2π)d/2 e− 1
2 ∥Σ1/2

q (x−y)∥2
cos⟨x − y, 2πµq⟩ mixture weights aq ∈ [0, 1], diagonal

covariance matrices Σq ∈ Sd×d, fre-
quency vectors µq ∈ Rd

Q × (2d + 1)

at test time, the neural network can only make use of the
input x. If, however, we are given both x, and a few la-
beled points, we would like to exploit that information dur-
ing predictions; the neural network trained via Eq. (5) ig-
nores information provided by such labeled points.

4.2 Neural Point Processes

We address these two issues with our proposed neural point
processes, as illustrated in Figure 1b. Intuitively, we treat
the labels at every pixel as a Gaussian Process, whose
means are regressed by the neural network, and whose co-
variance is determined by a (known) kernel. An immediate
consequence is that point labels are now correlated; this not
only leads to a different estimation process than Eq. (5) but
also allows incorporating any available point labels at infer-
ence time in a principled fashion. Consider again a sample
image xi with a corresponding labeled point set (Pi, yi)
given by Eq. (4). We assume that, for point pi ∈ [d1]×[d2],
the corresponding label yi ∈ R is given by:

yi = gi(pi) + ε, (6)

where ε ∼ N(0, σ2
0) is i.i.d. noise, and gi(·) is a GP:

gi(·) ∼ GP(mi(·), ki(·, ·)), (7)

whose mean function mi : R2 → R and kernel function
ki(·, ·) are given by

mi(p) = fp(xi;θ) ∈ R, ki(p, p′) = k(p, p′; ζi),
for p, p′ ∈ [d1] × [d2].

(8)

Thus, means are again the projections of the output of a
neural network f : Rd1×d2 × Rmθ → Rd1×d2 parameter-
ized by θ, and k(·, ·) is a parametric positive semidefinite
kernel parameterized by ζi ∈ Rmζ such as, e.g., the RBF
kernel. Moreover, the kernel parameter may or may not
depend on the image xi as we have three regimes to com-
pute ζi. Additional examples of parametric kernel candi-
dates and their parameters are provided in Table 1. Under

this assumption, we can estimate model parameters from a
dataset D through maximum likelihood estimation (MLE):

Theorem 1. If (a) labels are generated according to
Eq. (6), with i.i.d. noise σ0, and (b) GPs gi given by Eq. (7)
are also independent across images, then the maximum
likelihood estimate of θ can be obtained by minimizing

LNPP(θ, ζ; D) = 1
2

n∑
i=1

[
log |k(Pi,Pi;ζ) + 2σ2

0I|+ (9)

(yi−fPi(xi; θ))⊤(k(Pi,Pi;ζ)+σ2
0I)−1(yi−fPi(xi; θ))

]
.

where k(Pi,Pi;ζ) ∈ RLi×Li is the PSD covariance matrix
of GP gi over points Pi.

The proof can be found in Appendix A in the supplement.
We refer to Eq. (9) as the NPP loss. We observe that, com-
pared to standard MSE (Eq. (5)), which treats all residual
error terms equally in the Euclidean space, the error terms
are measured in the squared Mahalanobis distance, as im-
posed by the kernel/covariance matrix k(Pi, Pi; ζ). In-
tuitively, this enforces correlations between the values of
points that are proximal. Parameter σ2

0 that corresponds to
label noise can either be set to a small value, to ensure in-
vertibility or can be treated as a hyperparameter that can be
determined by measuring performance on a validation set.

We note there are several approaches to model the kernel
parameters ζ: (a) Static Kernel: the parameters be treated
as hyperparameters, tuned on a validation set along with
σ0. (b) Learnable Kernel: alternatively, as the NPP loss
is differentiable w.r.t. ζ, these can be estimated via gradi-
ent descent (GD) along with θ. Note that the second term
in Eq. (9) acts as an anisotropic regularization term in this
case. (c) Context-aware Kernel: finally, the kernel param-
eters can be regressed from the input as well. This is par-
ticularly useful in scenarios where each input image may
have distinct underlying spatial structures or correlations,
such as satellite images of different geographic regions.
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The inclusion of image-dependent kernel prediction thus
equips the model with the flexibility to adapt its learned
representations to diverse data distributions, making it ro-
bust in scenarios with heterogeneous input data. In this
case, each sample is endowed with a different kernel ki pa-
rameterized by ζi, where ζi = f ′(xi; θ′) for some neural
network f : Rd1×d2 × Rmθ′ → Rmζ parameterized by
θ′ ∈ Rmθ′ . Regression would then amount to minimizing
Eq. (9) w.r.t. both θ and θ′, again via GD.

We emphasize that our approach scales gracefully to high-
dimensional inputs (e.g., high-resolution images) because
the GP computation depends primarily on the number of
labeled points L, rather than the total number of pixels;
this is true also about the partial label revelation setting dis-
cussed below. Moreover, the sparse-label setting we study
(L ≪ d1 × d2) is relevant to many distributed sensing ap-
plications. We discuss computational complexity issues in
detail in Appendix B.

4.3 Using Labels Revealed at Test/Inference Time

Using a probabilistic GP as a model allows us to ex-
ploit the presence of labeled points that may be par-
tially revealed at test/inference time. Consider the fol-
lowing partial label revelation setting, in which a few
labels are revealed at certain points in a test image.
We denote by P† and P∗ be the points with revealed
and missing labels in the test image, respectively. The
joint distribution of corresponding labels Y† and Y∗ is:[

Y†

Y∗

]
∼ N

([
m(P†)
m(P∗)

]
,

[
k(P†, P†) + σ2

0I k(P†, P∗)
k(P∗, P†) k(P∗, P∗)

])
.

Conditioned on observations Y†, the posterior distribution
of Y∗ is Gaussian with the following mean and covariance:

E[Y∗|Y†]=m(P∗)+k(P∗,P†)K−1
†,†(y†−m(P†)), (10a)

cov(Y∗)=k(P∗,P∗)−k(P∗,P†)K−1
†,†k(P†,P∗), (10b)

where K†,† ≡ k(P†,P†) + σ2
0I. Hence, in the presence

of a labeled point set (P†, Y†), we can combine the esti-
mate produced by the neural network, producing the means
via Eq. (8). Thus, along with the observed values, by ex-
ploiting the available labels, Gaussian Processes can pro-
duce not only a MAP estimate of Y∗ via the expectation
in Eq. (10), but also the full Bayesian posterior, taking the
covariance into account as well.

5 EXPERIMENTS

We compare our proposed NPPs against competitors over
four different datasets (two synthetic and two real-world
datasets). We make our code publicly available. 3

3https://github.com/neu-spiral/
Neural-Point-Processes

Table 2: Dataset configurations. The column n represents
the number of images, d1 and d2 are the height and width
of an image. Lsparse and Ldense are the number of labeled
pins on an image in the sparse and dense setting. We used
five to ten times more labeled points for COWC compared
to Rotterdam due to the larger image sizes.

Dataset Point Distr. n d1 × d2 Lsparse Ldense

Synthetic Heatmaps grid 1000 28 × 28 9 100
random 1000 28 × 28 10 100

PMNIST grid 1000 28 × 28 9 100
random 1000 28 × 28 10 100

Rotterdam grid 1000 100 × 100 16 121
random 1000 100 × 100 10 100

COWC grid 1000 200 × 200 81 529
random 1000 200 × 200 100 500

We summarize our experimental setup here, and provide
additional details in Appendix C. Specifically, we describe
our dataset generation procedures, detailed network archi-
tectures, hyperparameter tuning strategies, hardware and
runtime configurations, and the formulas for all metrics
used. We also provide additional experiments analyzing
the sensitivity to kernel parameters and label sparsity.

5.1 Datasets

Our four datasets are summarized in Table 2. Synthetic
Heatmaps contains synthetic “elevation/heat maps” as in-
puts, and labels on points are determined by a GP parame-
terized by these inputs. Point MNIST (PMNIST) is MNIST
(LeCun et al., 1998) augmented with points dispersed over
the image, with labels measuring the pixel density in a re-
gion around these points. Rotterdam contains satellite im-
ages from the city of Rotterdam; point labels indicate the
density of buildings in the area surrounding each point.
COWC contains satellite images of cars with labels mea-
suring the number of cars within the region of points. Each
dataset is studied under two point distributions, grid and
random, illustrated in Figure 4 in Appendix C. Both are
studied in a sparse (Lsparse) and dense (Ldense) setting, cor-
responding to different numbers of labels L, as described in
Table 2. All datasets are described in detail in Appendix C.

5.2 Algorithms

We implement five different algorithms for regressing point
labels: Plain, i.e., training through the MSE loss in Eq. (5),
Neural Process (NP), the neural processes of Garnelo et al.
(2018b), specifically for the partial label scenario, Convolu-
tional Neural Processes (ConvNP), introduced by Gordon
et al. (2020), which explicitly embed spatial structure, and
compare them to two variants of our approach, NPP and
NPP-GP, corresponding to Eqs. (9) and (10), respectively.
In short, both use the same trained model, but in NPP-GP,
we allow the use of partial labels revealed at test time (see
Sections 4.3 and 5.4.3). Note that our competitor NP can

https://github.com/neu-spiral/Neural-Point-Processes
https://github.com/neu-spiral/Neural-Point-Processes
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Table 3: Experiment results for methods that use labels (ConvNP, NP, NPP-GP) and those that do not (Plain, NPP) on four
datasets. The best metrics are marked as Bold. The table compares MSE and R2 metrics in the regression setting with
no label given and the label revelation setting where we incorporate labels in inference time. We observe that across all
datasets and settings, NPP and NPP-GP remain the best in their settings (no label or partial label revelation) respectively
for most cases. For cases where the best performing methods are approximately tied (equal up to the 3-rd digit), we repeat
experiments with three runs from different seeds and report standard deviations in Appendix D.

Real-world

Datasets Rotterdam COWC Partial
Point pattern Grid Random Grid Random label revelation

Metric MSE ↓ R2 ↑ MSE ↓ R2 ↑ MSE ↓ R2 ↑ MSE ↓ R2 ↑

Sparse

Plain 1.79 −0.058 1.14 0.297 17.99 0.060 17.7 0.078
✗NPP (ours) 1.76 −0.046 0.834 0.437 4.89 0.767 7.77 0.594

NPP-GP (ours) 1.76 −0.046 0.833 0.437 4.86 0.769 7.65 0.600
✓NP 1.44 0.047 1.64 −0.027 14.0 0.263 15.9 0.171

ConvNP 0.725 −4.44 1.12 −8.10 16.6 −0.529 5.68 0.768

Dense

Plain 1.55 0.100 0.486 0.678 10.9 0.432 14.51 0.208
✗NPP (ours) 1.25 0.286 0.453 0.700 5.67 0.704 5.31 0.710

NPP-GP (ours) 1.25 0.287 0.443 0.707 5.60 0.706 5.02 0.726
✓NP 1.20 0.196 1.199 0.197 17.9 0.066 13.2 0.272

ConvNP 0.581 −7.27 0.344 0.379 19.7 −3.12 3.47 0.922

Synthetic

Datasets PMNIST Synthetic Heatmaps Partial
Point pattern Grid Random Grid Random label revelation

Metric MSE ↓ R2 ↑ MSE ↓ R2 ↑ MSE ↓ R2 ↑ MSE ↓ R2 ↑

Sparse

Plain 67.5 0.087 0.456 0.992 1298 −15.0 14192 −173
✗NPP (ours) 72.0 0.026 0.451 0.993 94.6 −0.164 27.1 0.666

NPP-GP (ours) 56.3 0.239 0.451 0.993 75.2 0.075 27.5 0.661
✓NP 78.2 −0.072 44.8 0.404 111 −0.381 104 −0.587

ConvNP 63.2 −19.4 29.7 0.293 79.8 −5.28 12.1 0.761

Dense

Plain 0.467 0.994 0.181 0.998 104 −0.28 27.1 0.666
✗NPP (ours) 0.307 0.996 0.128 0.998 94.6 −0.164 26.9 0.669

NPP-GP (ours) 0.300 0.996 0.120 0.999 74.71 0.081 26.9 0.669
✓NP 64.6 0.121 27.2 0.627 59.2 0.269 43.2 0.467

ConvNP 12.7 0.765 10.0 0.861 24.9 0.246 19.1 0.727

only predict labels in this partial label revelation setting.

A summary of optimal hyperparameters/design choices is
given in Table 8 in Appendix C of the supplement. Every
hyperparameter selection is based on the MSE loss over
the validation set (see Section 5.3). We explore the fol-
lowing common hyperparameters for all four methods. We
set the batch size to 32 and explore for the optimal ini-
tial learning rate within {0.0001, 0.001, 0.01}. We use the
Adam (Kingma and Ba, 2015) optimizer and decrease the
learning rate by 0.1× until 0.0001 if the validation loss
does not decrease for 5 epochs.

We also explore architectural choices for the first three
methods. We use two different architectures as neural net-
works f : a simple autoencoder (AE) Kramer (1991) and
an autoencoder combined with a DDPM feature extractor
Bonito et al. (2023). We use 3 variants of each approach
(in terms of layers) as candidate networks, and treat the op-
timal architecture (out of 6 in total) as a hyperparameter to
be tuned over the validation set. Additional details of these
architectures are provided in Appendix C. For NP, we use
the latent embedding architecture originally proposed by
Garnelo et al. (2018a). Finally, for ConvNP we follow the
corresponding implementation from the public Neural Pro-
cesses Family package (NPF) (Dubois et al., 2020).

W.r.t. NPP (and NPP-GP), we explore two kernels: an RBF
Kernel and an SM kernel (see Table 1). As mentioned in
Section 4.2, we have three approaches to model the ker-
nel parameters: (a) a static kernel, whose parameters ζ are
learned via validation (b) a learnable kernel, whose param-
eters ζ are treated as parameters learned via loss minimiza-
tion, and (c) a context-aware Kernel, whose parameters ζ
are regressed from features xi. For approach (a) we explore
the length-scale parameter ℓ ∈ {0.01, 0.1, 0.2, 0.5, 1, 2, 5}
for RBF; the optimal value via validation is used as a start-
ing point for approach (b). For SM, which contains a large
number of parameters, we only explore the number of mix-
tures Q ∈ {1, . . . , 5} and learn remain parameters via (b);
in particular, we initialize the kernel with weights µq = 1

Q
and an identity matrix Σq = I. We assume the noise is of
a magnitude of σ0 = 10−5. Finally, to implement the last
last approach (c), we add a fully connected layer to the the
encoder part of the AE to regress the parameters for the ker-
nel. We treat these approaches as hyperparameter choices,
with the optimal kernel choice (static, learned, or context-
aware) determined by MSE on the validation set. Note that
the same optimal values are also used in NPP-GP.
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5.3 Experiment Setup

The datasets are split into training (70%), validation (10%),
and test (20%) sets. Labels for each dataset are generated
in the training and validation set in two manners: in a regu-
lar grid (grid), and in a random fashion (random), at points
selected uniformly at random (u.a.r). To ensure a fair com-
parison between different training methods (grid vs. ran-
dom), labels in the test set are always of the random type,
i.e., at u.a.r. selected pixels. We select the best-performing
model hyperparameters based on the MSE on validation set
out of five distinct runs with different seeds (selected from
0, 1, 2, 3, 4). In the test set, we hide 50% of the available
point labels per image: to ensure a consistent comparison
across methods, this 50% of hidden labels is always used as
the target/ground truth prediction when we report test met-
rics. Methods Plain and NPP do not make any use of the
remaining 50% of labels at test time. In contrast NPP-GP
and NP observe these labels (i.e., operate in the partial la-
bel revelation setting). For the latter two methods, we also
considered a gradual revelation scenario: In particular, we
reveal 0%, 25%, 50%, 75%, and 100% of the non-hidden
labeled (i.e., 50%) points.

We evaluate performance on the (hidden) test set labels
w.r.t. two metrics: (a) MSE, i.e., the mean-square-error
(MSE) of predictions on hidden labels on the image, aver-
aged across images on the test set, (b) R2, i.e., the R2 value
of predictions against the average label value in the test set.
Formulas for these metrics are provided in Appendix C.

5.4 Results

For both synthetic and real-world datasets, we first compare
the proposed method against the MSE without labels at test
time to verify if its smoothness prior is useful in learning
the regression model. Next, we evaluate the performance
of NPP against its Gaussian Process-refined version (NPP-
GP) and NPF, including the NP and ConvNP, to examine
their ability to leverage available labels during testing. Ad-
ditionally, we explore the impact of different label densities
and distribution patterns (e.g., grid and random). The op-
timal hyperparameters for all experiments are detailed in
Appendix C.

5.4.1 Real-world Datasets

We show the results of real-world datasets including Rot-
terdam and COWC in the top half of the Table 3. When
only images are available (no partial label revelation at in-
ference time), NPP consistently outperforms the Plain MSE
across all eight settings, demonstrating the effectiveness of
incorporating smoothness priors from the GP component.

On the other hand, in the partial label revelation setting,
NPP-GP ranks as the top method in five out of eight scenar-
ios. One exception is the sparse grid setting on Rotterdam,

where only 16 labeled points are provided on 100 × 100
images; notably, all methods perform very poorly in this
setting, including the best-performing method (NP, with a
low R2 value of 0.047). Interestingly, both NPP and NPP-
GP significantly outperform NP (R2 = 0.437 vs. −0.027)
in the sparse random setting of Rotterdam, even with fewer
labels than the grid setting (10 points vs. 16). Meanwhile,
NPP-GP also achieves the best performance in the sparse
grid setting for COWC, where 81 labeled points are pro-
vided per 200 × 200 image. This demonstrates that NPP-
GP (and NPP) can still learn effectively from sparse grid
distributions as long as the number of points exceeds a cer-
tain threshold. Specifically, the models can learn from as
few as 0.2% points labeled (81 points compared to 40,000
per image), achieving strong performance (R2 = 0.769).
However, using the standard MSE loss in the plain setting
results in distorted prediction, with an R2 of just 0.06. Ad-
ditional visual results are presented in Section 5.4.4 and
Appendix D.

The other two exceptions are the random settings of
COWC, where we observe that ConvNP outperforms the
other methods by a noticeable margin. As ConvNP does
not perform as well in Rotterdam, we conclude that Con-
vNP requires more labels with a dense distribution of la-
beled objects (i.e., the car distribution in COWC is much
more dense than the building distribution in Rotterdam).
Although ConvNP shows superior performance in Table 3,
it is worth noticing that NPP outperforms trained ConvNP
when 125 labels are revealed (see Appendix D).

Lastly, we observe that for all cases, the NPP-GP improves
the performance over NPP, using the kernel identified via
validation MSE. Thus, we conclude that the GP correction
technique is effective, especially when the best-performing
method learns or predicts the appropriate parameters for
the kernel during training. We include the hyperparame-
ter table in Appendix C, and it shows that multiple best-
performing models learn or predict the kernel parameters.

5.4.2 Synthetic Datasets

The bottom of Table 3 provides a performance comparison
w.r.t. both MSE and R2 over synthetic datasets (Synthetic
Heatmaps and PMNIST). Similar to real-world datasets,
NPP again outperforms the Plain MSE baseline in seven
out of eight cases, highlighting the value of regularization
during learning from sparse labels.

In the partial label revelation setting, NPP-GP demon-
strates superior performance over the other methods in all
four cases on PMNIST. Nevertheless, NPP-GP underper-
forms ConvNP on the Synthetic Heatmap for the random
point distribution setting, as well as for the dense grid point
distribution. This is expected as the Synthetic Heatmap
is generated by a GP (see Appendix C; it comprises GP-
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Supplementary Material for Paper:
Neural Point Processes for Pixel-wise Regression

A Proof of Theorem 1

In this section, we present the detailed proof of Theorem 1.

Proof. Given point positions Pi =
[
p(1)

i , . . . , p(Li)
i

]⊤
and corresponding labels yi =

[
y(1)

i , . . . , y(Li)
i

]⊤
, consider the

Gaussian process in Eq. (7) with means obtained by the neural network f(xi; θ) ∈ Rd1×d2 , and added i.i.d. Gaussian noise
as in Eq. (6). Then, the labels of points on image i are distributed according to:

Yi = gi(Pi) ∼ GP(fP(ℓ)
i

(xi; θ), k(Pi, Pi; ζ) + σ2
0I) ∈ RLi , (11)

where k(Pi, Pi) ∈ RLi×Li is the PSD covariance matrix of GP gi over points Pi: in other words, its coordinates are
k(p(ℓ)

i , p(ℓ′)
i ) over all pairs ℓ, ℓ′ ∈ [Li]. Note that as k(Pi, Pi; ζ) is symmetric and positive semi-definite, k(Pi, Pi; ζ) +

σ2
0I is positive definite and is therefore invertible. The joint probability density of Yi evaluated at observed labels is:

fYi
(yi) =

exp
{

− 1
2

(
yi − fP(ℓ)

i

(xi; θ)
)⊤ (

k(Pi, Pi; ζ) + σ2
0I
)−1

(
yi − fP(ℓ)

i

(xi; θ)
)}

2πLi/2|k(Pi, Pi; ζ) + σ2
0I|1/2 .

Consequently, the maximum likelihood loss over i.i.d. images is:

LMLE(D; θ, ζ) =
n∏

i=1
fYi

(yi), (12)

and the corresponding negative log-likelihood is:

LNLL(D; θ, ζ) = −
n∑

i=1
log fYi

(yi)

=
n∑

i=1

[
1
2(yi − fPi

(xi; θ))⊤(k(Pi, Pi; ζ) + σ2
0I)−1(yi − fPi

(xi; θ))

+ 1
2 log |k(Pi, Pi; ζ) + σ2

0I| + Li

2 log(2π)
]
.

Removing constant terms, we obtain the Neural Point Processes (NPP) loss:

LNPP(D; θ, ζ) =
n∑

i=1

[
1
2(yi − fPi

(xi; θ))⊤(k(Pi, Pi; ζ) + σ2
0I)−1(yi − fPi

(xi; θ))

+ 1
2 log |k(Pi, Pi; ζ) + σ2

0I|
]
.

(13)

Therefore, minimizing this w.r.t θ is equivalent to maximizing the likelihood.
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B Computational Complexity

We derive the following computational complexity analysis for the baseline MSE and the proposed NPP. Note that in
our setting, we have sparse labels and here we assume WLOG all images have the same amount of labeled points, i.e.,
L ≪ d1 ×d2. Besides, we ignore the calculation regarding the kernel parameters as its number is negligible w.r.t the neural
network parameters, i.e., mζ ≪ mθ. We also want to stress that the sparsity of the labels (small value of L) is a major
motivating aspect of our work: if labels are dense, indeed the standard MSE approach would suffice.

Forward pass: Since plain MSE and NPP losses are associated with the same model, the inference step should have
similar complexities. We denote the inference complexity as Md1,d2,mθ

, where the network takes d1 × d2 inputs given mθ

parameters.

For the loss computation, the MSE loss calculated in a batch has a complexity of O(BL). On the other hand, the NPP loss
calculates the inverse of the kernel and the products, i.e., O(BL3). Here, we assume that inversion is O(L3), though this
can be reduced to O(L2.371552) through, e.g., variants of Strassen’s algorithm. However, if the kernel is static, the kernel
only needs to be computed once at the beginning; thus, the complexity becomes O(BL2).

Notably, at inference time, if no partial labels are revealed, we simply take the neural network’s output; in that scenario,
inference runs as fast as the baseline MSE estimate. Only when partial labels are present at inference time do we pay an
O(L3) overhead (with L being the number of revealed labels).

Backward propagation: With the scalar loss computed in the forward pass, the backward propagation refers to taking the
derivative w.r.t. the neural network parameters (and kernel parameters if the kernel is not static).

For MSE loss, the derivative computation is direct and the complexity is O(BLmθ). For NPP, the computation contains
taking the derivative of the network output via the inverted kernel, i.e., O(BL2 + BLmθ) (and also the derivative for the
log determinant of the kernel in the learnable and context-aware kernel case O(BL3)) in Equation (9).

Comparison and analysis: Summarizing the computational complexity, for the forward pass and backward propagation
of MSE, the complexity is O(BL + BMd1,d2,mθ

) for the forward pass and O(BLmθ) for the backward pass. In the
case of NPP loss with a static kernel, the forward pass complexity is O(BL2 + BMd1,d2,mθ

) and the backward propaga-
tion complexity is O(B(L2 + Lmθ)). When using learnable or context-aware kernels, the forward complexity becomes
O(BL3 + BMd1,d2,mθ

), and the backward complexity increases to O(B(L3 + L2 + Lmθ)).

The MSE and NPP (whether using static, learnable, or context-aware kernels) share the same upper bound in both forward
and backward passes under certain conditions. In the case of static kernels, if L ≪ min(M1/2

d1,d2,mθ
, mθ), the forward pass

and backward propagation complexities for both MSE and NPP reduce to O(BMd1,d2,mθ
) and O(BLmθ), respectively.

For learnable or context-aware kernels, this condition becomes L ≪ min(M1/3
d1,d2,mθ

, m
1/2
θ ).

Conclusion: In sparsely labeled setups where conditions are satisfied, the complexity of MSE and NPP are bounded
similarly for both forward and backward passes. However, as L grows closer to or exceeds mθ, the NPP loss becomes
more computationally demanding due to the quadratic and cubic terms in L, particularly for non-static kernels.

On the cubic dependence on L: Although the complexity of the inversion of the kernel is cubic in L, where L is the
number of (sparse) labels partially revealed at inference time, we do not explicitly need to invert; operations reduce to
solving a linear system (e.g., rT K−1r can be computed as rT v where Kv = r. As we add σ2

0I to the kernel matrix K,
it is always positive definite; we can thus control its condition number through σ0. We also empirically observe that the
optimal kernel bandwidths for static, learnable, and context-aware settings are all small, and, hence, K is also sparse. Thus,
we can use a conjugate gradient method to solve the corresponding linear systems in O(

√
κQ) time, where κ and Q are

the condition number and the cardinality of the support of the sparse matrix (Shewchuk, 1994). Thus, using the conjugate
gradient method, the actual complexity of NPP can be greatly reduced when K is sparse.

C Additional Experimental Details

C.1 Datasets

We describe all four datasets in detail in this section. We provide exemplars from each dataset in Figure 4.

Synthetic Heatmaps: We generate representations of random elevations as heat maps. We generate a dataset DSH =
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Table 4: Autoencoder architectures for different datasets. The input size denotes the channel number and shape of the
inputs. In the Encoder, Conv2d(x, 3, 1) denotes a 2D convolutional layer with ‘x’ output channels, a kernel size of 3, and
padding of 1. MaxPool2d(2, 2) indicates a pooling layer with a kernel size and stride of 2. In the Decoder, ConvT2d(x,
2, 2) represents a transposed convolution with ’x’ output channels, a kernel size of 2, and a stride of 2, with an optional
output padding input in the end with a default of 0.

Dataset PMNIST (Heatmaps) Rotterdam COWC
Input Size 1(3) × 28 × 28 4 × 100 × 100 3 × 200 × 200

Encoder

3 × (Conv2d(64, 3, 1) + ReLU)
MaxPool2d(2, 2)

3 × (Conv2d(32, 3, 1) + ReLU)
MaxPool2d(2, 2)

3 × (Conv2d(64, 3, 1) + ReLU)
MaxPool2d(2, 2)

3 × (Conv2d(32, 3, 1) + ReLU)
MaxPool2d(2, 2)

3 × (Conv2d(16, 3, 1) + ReLU)
MaxPool2d(2, 2)

3 × (Conv2d(64, 3, 1) + ReLU)
MaxPool2d(2, 2)

3 × (Conv2d(32, 3, 1) + ReLU)
MaxPool2d(2, 2)

3 × (Conv2d(16, 3, 1) + ReLU)
MaxPool2d(2, 2)

3 × (Conv2d(8, 3, 1) + ReLU)
MaxPool2d(2, 2)

Decoder
ConvT2d(32, 2, 2, 1) + ReLU

2 × (Conv2d(64, 3, 1) + ReLU)
ConvT2d(64, 2, 2) + ReLU

ConvT2d(16, 2, 2, 1) + ReLU
2 × (Conv2d(32, 3, 1) + ReLU)

ConvT2d(32, 2, 2) + ReLU
2 × (Conv2d(64, 3, 1) + ReLU)

ConvT2d(64, 2, 2) + ReLU

ConvT2d(8, 2, 2, 1) + ReLU
2 × (Conv2d(16, 3, 1) + ReLU)

ConvT2d(16, 2, 2) + ReLU
2 × (Conv2d(32, 3, 1) + ReLU)

ConvT2d(32, 2, 2) + ReLU
2 × (Conv2d(64, 3, 1) + ReLU)

ConvT2d(64, 2, 2) + ReLU

which is more complex and needs a deeper architecture, we treat the depth of both the encoder and decoder as a hyper-
parameter, adding additional convolutional layers: we experimented with 3 different architectures in total, illustrated in
Appendix C.2 of the supplement.

DDPM (Ho et al., 2020): Inspired by Baranchuk et al. (2022), we use DDPM as a feature extractor: after we train it we
use its feature maps as an alternative form of input to the autoencoder. We then train an AE on these maps as inputs, in
the same fashion as described above. We obtained the DDPM architecture from a public GitHub repository.5 The DDPM
is trained in a self-supervised fashion, to reconstruct the original input. The training comprises a forward and a backward
process. The forward process keeps adding noise to the original image input in a sequential way from step 0 to step T ,
while the backward process aims at predicting the noise from the final noisy image at step T backward to step 0 using a
UNet (Ronneberger et al., 2015) architecture, thus removing the noise.

After training, we evaluate the DDPM model by visualizing the generated samples. For PMNIST and Synthetic Heatmaps
datasets, we set the steps to be 1000, and the βmin and βmax for noise to be 10−4 and 0.02 respectively. Here, we apply
Sinusoidal embeddings (Vaswani et al., 2017) to encode temporal information. In the UNet, we have the encode and decode
paths. The encoder path has 4 blocks (with LayerNorm and 6 Conv layers followed by the SiLU activation (Elfwing et al.,
2018)) connected by a Conv layer of stride 2 to downsample the size and the resulting channels are [10, 20, 40, 80]. The
decoder has 3 blocks connected with a transposed Conv layer for upsampling and the results channels are [40, 20, 1].
Notably, we concatenate the time embeddings into the input of each block.

However, since Rotterdam is a much more complicated dataset than the other two Synthetic Heatmaps datasets, we failed
to achieve a good DDPM model. Thus, we load the pre-trained model from DDPM-CD (Bandara et al., 2022), which is
trained on various building-related datasets LEVIR-CD (Chen and Shi, 2020) and the generated images are verified by
visualization. The code and model are publicly available.6

In the experiments, we use shallow AE for PMNIST and Synthetic Heatmaps datasets, and we use all three AE with the
Rotterdam dataset. When we feed feature maps extracted from the DDPM, although the input channels are increased, the
intermediate channels remain the same. The detailed structures are shown in Tables 5–6, and discussed next.

Detailed Autoencoder Structures: For each dataset, we attempt to find the minimal structure that enables the baseline
method Plain to work successfully (achieving positive R2) in the random dense setting of each dataset. To explore the
minimum structure, we gradually add one block (consisting of three convolutional layers followed by ReLU with one max-
pooling layer). We list the optimal structure found for each dataset based on the validation set in Table 4. For PMNIST and
Synthetic Heatmaps, the shallow AE is used. Furthermore, we add one (two) extra block(s) for the encoder and decoder
for Rotterdam (COWC).

Note that for the Context-aware kernel, we predict the model by connecting an extra FC layer to the encoder. The output
dimension depends on the kernel choices.

5https://github.com/BrianPulfer/PapersReimplementations
6https://github.com/wgcban/ddpm-cd
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Table 5: DDPM architectures with UNet as inputs across different datasets for reproducibility.

Dataset Input Shape DDPM Initialization with UNet

Synthetic Heatmaps 3 × 28 × 28
DDPM(UNet(3, shape=(28,28)),
n_steps=1000, min_beta=10−4, max_beta=0.02, device=device)

PMNIST 1 × 28 × 28
DDPM(UNet(1, shape=(28,28)),
n_steps=1000, min_beta=10−4, max_beta=0.02, device=device)

Building 4 × 100 × 100
DDPM(UNet(4, shape=(100,100)),
n_steps=1000, min_beta=10−4, max_beta=0.02, device=device)

Cars 3 × 200 × 200
DDPM(UNet(3, shape=(200,200)),
n_steps=1000, min_beta=10−4, max_beta=0.02, device=device)

Table 6: UNet Architecture Used Within DDPM Across Different Datasets. Each Conv block in the upsampling path
takes both the previous upsampled feature maps and the results from the corresponding downsampling layers as input
(concatenated).

Component Architecture Details

Time Embedding nn.Embedding(n_steps=1000, time_emb_dim=100)
Sinusoidal Embedding: t → R100

Conv1
Conv2d(input channels, 10, 3) + SiLU
5 × (Conv2d(10, 10, 3) + SiLU)
Downsample: Conv2d(10, 10, 4, stride=2)

Conv2
Conv2d(10, 20, 3) + SiLU
5 × (Conv2d(20, 20, 3) + SiLU)
Downsample: Conv2d(20, 20, 4, stride=2)

Conv3
Conv2d(20, 40, 3) + SiLU
5 × (Conv2d(40, 40, 3) + SiLU)
Downsample: Conv2d(40, 40, 4, stride=2)

Bottleneck
Conv2d(40, 20, 3) + SiLU
7 × (Conv2d(20, 20, 3) + SiLU)
Conv2d(20, 40, 3) + SiLU

Upsampling1 ConvTranspose2d(40, 40, 4, stride=2) + SiLU
ConvTranspose2d(40, 40, 2)

Conv4

Takes inputs from Upsampling1 and Conv3 (concatenated)
Conv2d(80, 40, 3) + SiLU
Conv2d(40, 40, 3) + SiLU
Conv2d(40, 20, 3) + SiLU
3 × (Conv2d(20, 20, 3) + SiLU)

Upsampling2 ConvTranspose2d(20, 20, 4, stride=2) + SiLU

Conv5

Takes inputs from Upsampling2 and Conv2 (concatenated)
Conv2d(40, 20, 3) + SiLU
Conv2d(20, 20, 3) + SiLU
Conv2d(20, 10, 3) + SiLU
3 × (Conv2d(10, 10, 3) + SiLU)

Upsampling3 ConvTranspose2d(10, 10, 4, stride=2) + SiLU

Conv6

Takes inputs from Upsampling3 and Conv1 (concatenated)
Conv2d(20, 10, 3) + SiLU
5 × (Conv2d(10, 10, 3) + SiLU)
Conv2d(10, input channel, 3) + SiLU

Detailed DDPM Structure: For DDPM, we use a common structure for all experiments and further use a pre-trained
DDPM specifically for Rotterdam (Bandara et al., 2022). To be specific, we conducted experiments with the model struc-
ture summarized as in Table 5 with the default UNet and DDPM as in Table 6 and Table 7. Moreover, for Rotterdam, due to
the low performance, we also tested both MSE and NPP with a pre-trained DDPM that is publicly available as mentioned
on similar satellite datasets, such as s LEVIR-CD.

The UNet architecture employs skip connections to combine feature maps from different levels. During the upsampling
path, the upsampled feature maps are concatenated with the corresponding feature maps from the downsampling path
to enhance the representation. Specifically, Conv4 takes inputs from both Upsampling1 and Conv3, Conv5 integrates
features from Upsampling2 and Conv2, and Conv6 merges the upsampled features from Upsampling3 with those from
Conv1.
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As Neural Processes-based methods cannot process images directly (they operate in the label space by learning the mapping
from pixel coordinate to labels), we follow the structures in their work. The structures are shown below.

Neural Processes (NP) (Garnelo et al., 2018b): Recall that the NP model consists of three parts: the encoder, aggregator,
and decoder. The encoder is composed of three fully connected (FC) layers with two ReLU activation functions in between,
the aggregator is composed of 3 FC layers followed by one Sigmoid function, and the decoder is made of 3 FC layers with
each followed by a ReLU activation.

Convolutional Neural Processes (ConvNP) (Gordon et al., 2020): The ConvNP model extends the neural process frame-
work to handle spatial data by leveraging convolutional architectures for efficient and translation-equivariant processing.
Its encoder begins with two parallel convolutional layers—each with a kernel size of 11—where one computes a so-called
signal representation and the other estimates density by convolving the masks. These outputs are normalized and concate-
nated before being passed through a single linear layer that projects the 2-channel input into a 128-dimensional latent space.
Next, a convolutional neural network comprising 5 convolutional blocks (each using a kernel size of 9) refines this latent
grid representation by aggregating local spatial information (Chollet, 2017). Finally, the decoder, typically implemented
as a 2-layer multilayer perceptron (one hidden layer with ReLU activation followed by an output layer), maps the refined
features to output predictions, ensuring that the model can seamlessly handle varying context sizes while preserving spatial
consistency and translation equivariance.

C.3 Metrics

We evaluate our models with pixel-wise MSE loss and both global and local R2. Given a label yi = [y(1)
i , . . . , y

(Li)
i ] ∈ RLi

and the corresponding prediction ŷi = fPi
(xi; θ), the average pixel-wise MSE over all n images can be expressed as:

MSE = 1
n

n∑
i=1

1
Li

Li∑
j=1

(
y

(j)
i − ŷ

(j)
i

)2
,

where ŷ
(j)
i denotes the prediction of image i on the j-th point p(j)

i . We also compute R2, the coefficient of determination,
defined as:

R2 = 1 −

∑n
i=1
∑Li

j=1

(
y

(j)
i − ŷ

(j)
i

)2
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i=1
∑Li

j=1

(
y

(j)
i − ȳglobal

)2 ,

where

ȳglobal =
∑n

i=1
∑Li

j=1 y
(j)
i∑n

i=1 Li

is the global average of the labels. The numerator represents the residual sum of squares (RSS), and the denominator
represents the total sum of squares (TSS), reflecting the variance in the true values.

C.4 Code and Hardware Implementation Details

All cited repositories used in this work are released under the MIT license. In terms of the hardware configurations, all
experiments were conducted on a Tesla V100-SXM2-32GB GPU with CUDA Version 12.3. The system was equipped
with an Intel(R) Xeon(R) Gold 6132 CPU @ 2.60GHz.

C.5 Optimal Hyperparameters

As mentioned, we treat learning rates, features (original images or DDPM extracted features), kernels, and kernel param-
eters as hyperparameters. Then, we explore the best combination based on the validation set. Here, we report the optimal
hyperparameters in Table 8 corresponding to the results shown in Table 3 for reproducing purposes.

D Additional Experimental Results

D.1 Performance Trend in the Partial Label Setting

In Section 5, we show the relation between performance w.r.t. different percentages of revealed labels in the dense random
setting. Here, we present the relation in the other three settings: sparse random, dense grid, and sparse grid in Figure 5.
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Table 7: DDPM Diffusion Process and Architecture

Component Details
n_steps 1000 (Number of diffusion steps)

βt Linearly spaced between min_beta=10−4 and max_beta=0.02
αt αt = 1 − βt (Scaling factor for retaining the original image data at time step t)
ᾱt ᾱt =

∏t

s=1 αs (Represents the cumulative product of αs

Forward Process

At time step t, the noisy image xt is computed as:
xt =

√
ᾱt · x0 +

√
1 − ᾱt · η

where x0 is the original image and η is Gaussian noise.
Noise is added incrementally over n_steps to reach xT , a fully noisy image.

Reverse Process

The model learns to predict the noise ηt added at each time step t.
At each reverse step, the UNet estimates the noise ηt given xt and t.
The denoised image at step t − 1 is computed as:

xt−1 = 1√
αt

(
xt − 1−αt√

1−ᾱt
· ηt

)
This progressively removes noise from xt to recover x0.

Table 8: The optimal hyperparameters corresponding to the results shown in Table 3. * indicates that the model takes
DDPM extracted features as inputs. - indicates not applicable (the method does not use a kernel).

Real-world

Datasets Rotterdam COWC
Point pattern Grid Random Grid Random

Metric Kernel (ζ0) LR Kernel (ζ0) LR Kernel (ζ0) LR Kernel (ζ0) LR

Sparse
Plain - 0.001 - 0.001 - 0.001 - 0.001

NPP/NPP-GP SMcontext (1.0) 0.001 SMlearnable (2.0) 0.001 RBFstatic (0.01) 0.001 RBFstatic (0.1) 0.001
NP - 0.001 - 0.001 - 0.0001 - 0.0001

Dense
Plain - 0.001 - 0.001 - 0.001 - 0.001

NPP/NPP-GP RBFstatic (0.01) 0.001 RBFlearnable (0.2) 0.001 RBFstatic (0.01) 0.001 SMstatic (2.0) 0.001
NP - 0.0001 - 0.0001 - 0.0001 - 0.001

Synthetic

Datasets PMNIST Synthetic Heatmaps
Point pattern Grid Random Grid Random

Metric Kernel (ζ0) LR Kernel (ζ0) LR Kernel (ζ0) LR Kernel (ζ0) LR

Sparse
Plain - 0.001 - 0.001 - * 0.01 -* 0.001

NPP/NPP-GP RBFstatic (0.2) 0.001 SMlearnable (2.0) 0.001 RBFlearnable (2.0) * 0.01 RBFstatic (0.01) 0.001
NP - 0.0001 - 0.0001 - 0.001 - 0.001

Dense
Plain - 0.001 - 0.001 - 0.01 - 0.001

NPP/NPP-GP SMlearnable (2.0) 0.001 RBFstatic (0.2) 0.001 RBFcontext (0.1) 0.01 RBFstatic (0.01) 0.01
NP - 0.0001 - 0.001 - 0.001 - 0.001

The behavior w.r.t. both R2 and MSE loss is consistent with the one reported in Section 5. Except for three settings where
the performance is saturated (NPP itself achieves 0.995 R2 in both dense grid and sparse random of PMNIST) or all the
methods fail (all methods achieve around 0 R2 in sparse grid of Rotterdam), we observe that with the increasing amount
of revealed labels, the performance all increases for both NPP-GP and NP. Meanwhile, NPP-GP outperforms the rest in
a majority of cases. Thus, we conclude that the NPP-GP method based on the NPP kernel is robust and effective across
different settings and datasets.

D.2 Visualization on COWC

We also provide a qualitative figure in Figure 6 to visually compare the performance of Plain and NPP methods under a
dense random setup. The figure presents two test images from the Rotterdam dataset, alongside their respective predictions
using both methods. The scattered colored points indicate the 100 labeled pixels with corresponding ground truth values.
By superimposing the semi-transparent predictions over the test images, we can assess how well each method captures car
density regions. As observed, in contrast to Plain, NPP does not misidentify regions of high car density, demonstrating its
superior performance in preserving spatial structures.

D.3 Detailed Results of the Tied Methods on PMNIST

To distinguish the tied results in Table 3, we provide the standard deviation by running the experiments on 3 different seeds
in Table 9.
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