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Abstract—Large Language Models (LLMs) have changed the
way we access and interpret information, communicate with each
other and even operate computer systems through autonomous
code generation. Typically, these billion-parameter models rely
on cloud storage and execution due to their computational
demands. In this paper, we challenge this status quo by proposing
JARVIS, a distributed LLM framework that splits model layers
across edge devices with limited compute resources, trading off
computation for increased peer-level communication. JARVIS is
robust to individual node failures, including recovery methods for
lost layers via peer-level duplication. We evaluate JARVIS using
Google’s open-source Gemma LLM (2B parameters) deployed
over 18 software-defined radios in the NSF Colosseum RF em-
ulator. Our evaluation explores LLM performance degradation
from node losses, providing insights into node prioritization in
tactical environments. The JARVIS software code is released for
community exploration and adoption.

Index Terms—Artificial Intelligence, Generative AI, Large
Language Models, Network Slicing, Distributed Computing

I. INTRODUCTION

Generative AI, particularly large language models (LLMs),

is driving innovations in language translation, text generation,

and automated reasoning [1]. However, their significant com-

putational demands require centralized cloud-based inference.

Models like GPT-4 [2], Gemini [3], and Llama 3 [4] range

from billions to over a trillion parameters, requiring substantial

storage. In this paper, we propose JARVIS, a novel approach

that splits a trained LLM across multiple distributed nodes,

eliminating the need for powerful remote clouds and enhancing

resilience. JARVIS supports distributed intelligence, is robust

to node failure, and is capable of self-repairing and self-

organizing across various network topologies and constraints.

Need for Distributed AI for Inference, Spotlight on

LLMs: Traditionally, LLMs execute queries on remote

servers, but this is impractical in tactical scenarios lacking reli-

able cloud connections and infeasible on handheld devices [5].

Techniques like model pruning [6] and quantization [7] have

limits and can degrade inference capability. Centralized points

of failure are also undesirable due to potential adversarial

actions. Thus, we believe a distributed LLM on cooper-

ating nodes offers significant advantages. By incorporating

resilience-by-design, JARVIS overcomes the limitations of

centralized LLMs.

Networking and AI are tightly integrated. AI has primarily

optimized network operations, but there is an opportunity to

design networks specifically for AI tasks. JARVIS exemplifies

this vision by allocating LLM components to nodes based on
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Fig. 1. Overview of the JARVIS framework. The numbers represent different
layer-wise splits of the LLM, with the first and last parts running at the UE.
JARVIS supports distributed nodes with both wireless and wired links and is
resilient to intermediate layer/node losses by re-routing the connections to the
next hop, as shown in the case of the node/layer 3.

connectivity, storage, and computational ability. This balances

the computational power of cloud architectures with the ben-

efits of distributed networks, such as eliminating single points

of failure, enabling localized inference, and enhancing privacy,

despite the overhead of inter-node communication.

Challenges in Designing JARVIS: Overlaying an LLM on

a physical network is complex. We must identify optimal split

points to maintain performance and map each split within the

network, considering nodes’ CPU/GPU resources and inter-

node link interference. A node with better GPU may be

ineffective if its links have high bit error rate. To address

potential node failures, we replicate and distribute LLM splits

across the network, ensuring redundancy and recovery op-

portunities. Fig. 1 shows JARVIS’ distributed inference and

recovery mechanisms.

Our main contributions in the design and deployment of

JARVIS are:

• Demonstrating how an open-source LLM, such as

Google’s Gemma, can be split into over a dozen lay-

ers, each executed on separate, resource-constrained

devices.

• Novel layer skipping and recovery mechanisms for

resilient operation, allowing safe skipping of layers and

retrieval of LLM splits from peer devices.



TABLE I
COMPARISON OF ARCHITECTURAL FEATURES AND PERFORMANCE METRICS OF FIVE OPEN-SOURCE LLMS

Model Release
Time

# Params
(B)

# Layers Model Size
(GB)

Token Embedder
(MB)

Layer size
(MB)

Max. length
context window

O/P size per token
(MB) [8k tokens]

MMLU ↑

LLaMA3 8B Apr-24 8 32 29.92 2004 832.02 8k 0.0156 [125] 66.6

Mistral 7B v0.1 Sep-23 7 32 26.49 500 832.04 8k 0.0156 [125] 60.1

Gemma 7B Feb-24 7 28 31.81 3000 1056.02 8k 0.0117 [93.75] 64.3

Gemma 2B Feb-24 2 18 9.34 2000 320.02 8k 0.0078 [62.5] 42.3

Phi-3 mini 128k Apr-24 3.8 32 14.23 375.75 432.02 128k 0.0117 [93.75] 68.1

• Automated orchestration framework that configures

and adapts communication between LLM layers across

heterogeneous devices, optimizing performance and flex-

ibility.

• First time deployment at scale on 18 radio nodes in the

NSF Colosseum emulator, rigorously evaluating network

traffic and computational overhead.

The remainder of the paper is organized as follows: Section

II provides a background on LLMs, split Deep Neural Net-

works (DNNs) and distributed networks for AI; Section III

describes the detailed design and implementation of JARVIS;

Section IV presents a real deployment and evaluation of the

system’s performance; and Section V concludes the paper.

II. BACKGROUND AND RELATED WORKS

A. State-of-the-Art in LLMs

The Transformer architecture from [8] revolutionized nat-

ural language processing by introducing the attention mech-

anism. The latter enables models to generate effective rep-

resentations from the input data by contextualizing it within

sentences. This advancement led to the development of LLMs,

known for their exceptional generalization abilities. Table I

compares five popular open-source models, highlighting their

size, features and performance on the Massive Multitask

Language Understanding (MMLU) [9] benchmark, a widely

used and established measure in natural language processing

for evaluating the general knowledge and reasoning abilities

of LLMs.

The computational demands of state-of-the-art LLMs, such

as LLaMA3 8B and Mistral 7B, which require over 20 GB

of storage and substantial RAM pose significant storage and

memory challenges, making them impractical for devices

with limited resources. These requirements often necessitate

specialized hardware and cloud-based solutions for execution.

Consequently, splitting and distributing the model for infer-

ence allows the utilization of constrained devices that cannot

run the entire model but can efficiently manage smaller parts.

B. Distributed Computing for AI Workloads on Edge Networks

Advancements in distributed computing for DNNs have

enabled training and inference of large models beyond sin-

gle machines’ capabilities. Techniques like data, tensor, and

pipeline parallelism manage these models despite communi-

cation and synchronization challenges [10]–[12]. While tensor

parallelism is common for sharding models, it introduces

significant synchronization overhead, which complicates de-

ployment in resource-constrained and latency-sensitive envi-

ronments like those targeted by our framework. Consequently,

we favor pipeline parallelism, which reduces communication

overhead and better aligns with our objectives of resilience

and operational flexibility. The usual memory and compute

constraints of DNNs are further amplified when we consider

LLMs, which are infeasible to run without optimizations on

standard user equipments (UEs) like smartphones and other

edge devices [13].

Recent research addresses these issues with techniques

like split learning and inference [14], [15], and the use of

potentially idle constrained devices [16], [17]. Our JARVIS

framework extends these concepts to tactical environments by

dynamically allocating model segments and addressing node

failures to maintain continuous operation, as demonstrated

in Section IV-A. This approach optimizes the computational

footprint and enhances both resilience and flexibility.

C. Networks for AI

Traditional AI models trained in centralized data centers

face concerns about data confidentiality, integrity, and single

points of failure, especially in tactical settings [18]. Cen-

tralized models depend on single network links, leading to

bandwidth bottlenecks and vulnerabilities. While deploying AI

locally can help, LLMs are too large for single edge devices,

necessitating a new network architecture for distributed AI

across edge devices and mobile equipment [19]. Although

emerging 6G networks offer virtual slices to meet AI Quality

of Service requirements [20], traditional cellular architec-

tures alone may not be viable in expeditionary environments.

JARVIS realizes the vision of ‘Networks for AI’ by integrating

cellular, Wi-Fi, and wired transport to connect edge nodes,

enhancing robustness, optimizing data routing, and adapting

to network conditions. This supports efficient AI deployment

across diverse environments, from urban centers to remote

locations, and ensures continuous AI operations.

III. SYSTEM DESIGN AND IMPLEMENTATION

Fig. 1 illustrates the JARVIS architecture, where the lay-

ers of the LLM are distributed across a network of both

wireless and wired links. Each node running a layer may

have different compute and storage capabilities, from handheld

devices carried by soldiers to servers on portable 5G base

stations. The following sections detail the implementation of

this architecture.
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Fig. 2. High-level overview of the client-server application layer’s logical
architecture. The solid blue line shows a standard inference pass, forming a
circular route through nodes, referred to as a token ring. Each layer acts as a
server to the previous layer and a client to the next. Transmission can occur
through various links (wireless, cellular, or wired). In the event of a node
failure, such as node 3, traffic is re-routed to ensure continued operation.

A. JARVIS Framework

While various types of virtualized networks are possible, our

current implementation of JARVIS distributes the LLM across

multiple nodes organized in a token ring topology. Since each

node hosts a distinct layer of the LLM, generating each output

token requires a full forward pass through all nodes, forming a

closed cycle. Here, a layer refers to an individual component

of the LLM distributed across the network, while a node is

a device or system hosting one or more layers. Nodes are

connected to form a token ring topology, ensuring efficient

message passing of hidden states and control information.

This framework is designed to optimize resource utilization

on edge devices with limited computational capabilities. By

distributing different layers of the LLM to various nodes,

JARVIS trades local computation for increased peer-level com-

munication. To address scenarios where multiple inferences

are requested simultaneously, JARVIS supports batching, al-

lowing nodes to process multiple prompts concurrently by

grouping them together into a single forward pass. Overall,

JARVIS can be described as a decentralized system for LLM

inference on nodes connected over heterogeneous link types

in a token ring-like network as illustrated in Fig. 2.

B. Splitting an LLM

We split the LLM into two components: layers at the UE

(text tokenizer, embedder, first and last transformer decoder

layer, and sampler) and hidden layers on constrained devices

over a local network. The UE handles initial feature extraction

and final output prediction. A single forward pass requires

round-trip communication across the network, as shown in

Fig. 3.

In JARVIS, text generation begins at the UE, where the

tokenizer converts the input prompt into tokens. These tokens
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Fig. 3. Forward pass overview of the split LLM architecture in JARVIS.
The UE handles initial text processing and final token generation, while
intermediate layers are distributed across devices. The figure shows the round
trip communication, with hidden states sent from the UE to nodes and refined
states returned for final output.

are processed by the embedder and the first transformer

decoder layer, producing initial hidden states. These states

are then distributed to various nodes for further contextual

refinement. The refined states are sent back to the UE, where

the sampler selects the next token, repeating until the output

sequence is complete. Finally, the tokenizer converts the tokens

back into words.

Key structures like caches, positional embeddings, and

masks are initialized on both the UE and nodes. The UE sends

an initial message to each node with necessary details. The

first forward pass involves transmitting the entire input prompt

to establish foundational embeddings. Subsequent passes only

transmit the last token generated, reducing computational load

and data transfer. Each token generation requires a forward

pass through all layers, including passing token indexes to

update caches and apply the correct positional embeddings

and masks.

C. Network design

We designed a simple client-server application layer proto-

col for transferring information between devices. Each node

operates as both a server and a client: node N serves node

N − 1 and sends updates to node N + 1, as shown in Fig. 2.

There are several key systems-level challenges at the transport

and application layers that we highlight in this section.

Transport Layer Selection: We chose TCP for reliable, in-

order packet delivery, despite its higher round-trip latency, to

ensure reliable delivery of hidden states.



TCP Connection Design: We considered two approaches:

creating a new TCP connection for each token transfer or

maintaining a continuous connection. Although maintaining

a continuous connection reduces handshake overhead and op-

timizes bandwidth through TCP’s congestion and flow control

algorithms, we opted for the simpler design of creating a

new connection for each round trip of hidden states. This

choice avoids long-term port reservations and allows for a

more granular analysis of network traffic during inter-layer

messaging of the LLM, as discussed in Sec. IV-B.

Passing Model Hidden States: The application layer message

format was designed to include the tensor meta-data and

values. We use a multi-level Python dictionary to transmit

information types such as ‘KV index’ and ‘hidden state’ for

a normal inference call or ‘batch size’ and ‘max seq len’ for

the message to initialize the generation process. Tensors are

converted to numpy arrays, then to bytes, and encoded in

base64 using utf-8 before serialization using JSON. Data is

sent in chunks with an ‘END’ message signaling completion.

On reception, the data is reconstructed, and the tensor is

deserialized back to its original type and shape.

D. Node allocation

To demonstrate JARVIS’ capabilities, we built an initial

framework for deploying different LLM layers to multiple

nodes in Colosseum [21], the world’s largest wireless network

emulator with hardware in-the-loop. JARVIS supports three

network transmission types (Fig. 2): a cellular (LTE) link,

using the SCOPE framework [22]; Wi-Fi using an 802.11

a/g/p modem with a GNU Radio-based protocol stack [23];

and wired 10 Gbps Ethernet connections.

Colosseum provides various wireless channel scenarios for

JARVIS deployment, replicating RF conditions of cities like

Rome, Boston, and Salt Lake City based on real cellular

base station locations [22]. We also use the Alleys of Austin

scenario, set in downtown Austin, TX, supporting 50 nodes

divided into 5 squads, each with 9 pedestrian users in column

formation and a UAV circling above [21].

We created automated tools for rapid deployment of new

topologies. Users provide a configuration file listing nodes,

network connections, and desired layers. Our setup script

deploys each node’s networking stack and initial layer weights,

allowing flexibility in layer assignment based on computing

capabilities. The route-building script detects network connec-

tions between nodes and configures interfaces and routing for

logical connections.

E. Node failure control

We can test the impact of a node failure using our route-

building script. Initially, users can remove a node or layer

from the configuration file and re-run the script, which auto-

matically reconfigures JARVIS to route information through

the available layers.

Future implementations will automate this process with a

centralized node monitoring system that updates the node-

layer list and re-runs the route-building tool. Additionally, we

Prompt:
What can I do in Barcelona?

Functioning model response:
**Top attractions in Barcelona:**
* Sagrada Familia
* Park Guell…

Degraded model response:
The best city in Barcelona is a vibrant and 
lively city with a diverse tapestry…

Critical Failure model response:
impraments incutail seiz seiz conspic conspic 
effe effe effe effe effe effe effe effe effe...

Fig. 4. Example input prompt and model responses with different layer skips.
Skipping layer 2 yields a relevant answer, while skipping layers 1 and 8
produces a coherent but incorrect response (‘the best city in Barcelona’).
Skipping layers 11 and 18 results in repetitive, meaningless output, showing
that only certain layer-skipping combinations cause model failure.

are developing a decentralized approach where each layer, L,

knows the next two hops. If layer L+1 fails to respond, layer

L will automatically skip to layer L+ 2.

IV. EVALUATION AND RESULTS

A. Model Performance

We successfully split two different LLMs, Gemma 2B and

Gemma 7B, and provide results in this section. As described

in III-B, the split consists of running the head and tail parts

of the model in the UE and the remaining hidden layers on

distributed nodes. This adds privacy to the processing of the

user prompts at the cost of computing overhead at the edge and

added network traffic. Fig. 4 shows various recorded responses

of the 2B model to the same prompt with different layers

skipped, illustrating varying levels of generation degradation

depending on the specific layers skipped.

To test the resilience of LLMs to the layer-skipping phe-

nomenon, we evaluated the accuracy of both Gemma LLMs

on the MMLU benchmark [9] by progressively removing one

or two layers. The models were tested on 5 example multiple-

choice questions and a final question, with the correct answer

determined by selecting the highest-scoring option (A, B, C, or

D) based on the calculated logits for the next token probability.

We first measured the full model’s accuracy, then assessed the

impact of removing layers individually and in pairs, as shown

in Fig. 5. The relative accuracy degradation was calculated by

dividing the accuracy reduction after removing specific layers

by the full model’s accuracy.

The heatmap shows performance degradation for different

layer removals, with darker nodes indicating complete failures.

Removing the first layer causes a significant accuracy drop, but

because it processes the initial prompt, it is assumed always

to be available. Single-layer removals, represented along the

diagonal, generally cause minimal degradation, with later

layers having less impact. However, some middle layers, like



Fig. 5. Heatmap illustrating the relative accuracy difference of the Gemma
2B and 7B LLMs on the MMLU benchmark dataset with layer removals.
Accuracy is measured by the number of correct answers the models provide
to multiple-choice questions across various topics. The relative accuracy is
calculated by dividing each model’s performance by the accuracy of the full
model. Each index (i, j) in the matrix represents the accuracy difference
compared to the full model when layers i and j are removed. Darker squares,
such as in column and row 1, indicate complete model failure. The diagonal
shows the impact of removing individual layers. It is evident that the first layer
and certain middle layers are more critical. Additionally, the larger model
(Gemma 7B) appears to be less affected by layer skipping, particularly in the
later layers.

11 and 13 in Gemma 2B, are more critical. Two-layer removals

reveal non-critical interactions among later layers, while the

most severe effects are seen in the middle layers. Notably,

the 7B model shows fewer critical interactions from skipping

layers than the 2B model, suggesting that the resilience to layer

skipping is likely due to the overparameterization of LLMs.

Larger models could potentially enhance this resilience further,

allowing even more layers to be skipped.

We also assessed the model’s text generation for Gemma

2B with layer removals. Removing the first or last layer alone

led to critical failure responses, while two-layer removals

varied in impact. This indicates system resilience to specific

layer failures. Consequently, even with simultaneous node

failures, the system may remain functional depending on the

layers involved. Important layers should be allocated to secure

nodes, and recovery protocols initiated upon node failure.

Interestingly, in some cases, letting the model generate the

next token freely with certain layer removals even improved

the model’s performance.

B. Network Performance

To analyze model traffic, we conducted experiments using

the Gemma 2B model with input prompts from 10 to 1000

tokens, limiting the generated tokens to 200. This setup en-

sures consistency with up to 200 forward passes and exchanges

between the UE and other layers. The initial context length

impacts the initial information transfer, and is followed by

Fig. 6. Throughput for the duration of 4 different experiments, with different
prompt lenghts (input tokens). For these generation processes, we only split
the UE from a powerful server running the rest of the layers and observe
the traffic between them. We observe a large peak when sending the input
tokens. As more tokens are sent, the peak is higher and happens later due
to more demanding computational effort at the UE. Consequently, the overall
inference takes longer and ends later.

Fig. 7. This figure shows TCP receive and congestion window sizes in bytes
during the initial exchange of hidden states for a prompt length of 1000 tokens.
TCP window scaling exhibits standard congestion control behavior, with the
receive window ultimately limiting throughput at nearly 3,000 kilobytes. This
demonstrates that the transmission speed between layers is constrained by the
receiving edge device’s buffer size.

the transmission of hidden states for the remaining generated

tokens.

We examined network traffic between the UE’s layer 1

(client) and the next layer (server). The initial hidden state

round trip causes a significant spike in network utiliza-

tion, while subsequent updates maintain consistent throughput

(Fig. 6). The input context length affects the initial peak timing

and magnitude, as larger input prompts result in larger hidden

state dimensions. Larger structures also take longer to process,

extending the overall inference time.

Initial Hidden States Update: The initial update of hidden

states requires significant data transfer, averaging 11.6 KB per

token. For instance, 50 tokens generate an initial message of

about 583 KB, causing a brief spike of 5 Mbps, while 1000

tokens result in 11.6 MB and a 90 Mbps spike. TCP window

scaling during this transfer shows typical congestion control

behavior, with the receive window limiting throughput, seen

in Fig. 7.

Incremental Model Updates: After the initial exchange, the

client sends the server 199 incremental updates (since output

tokens are capped at 200) with a mean size of 12.1 KB,

resulting in an average throughput of just under 800 Kbps,

shown in Fig. 6. The processing time for the incremental

updates will be the same regardless of the context length.



Fig. 8. Comparison of generation times across different configurations in the
JARVIS framework, measured from prompt submission to generation of 100
tokens. The y-axis shows various combinations of wireless (w) and Ethernet
(e) links. The upper group of bars shows minimal impact from running
two layers per device. The lower group highlights that wireless connections
significantly increase generation time. Additionally, placing the UE on a wired
connection optimizes the overall process. Skipping a layer on a wireless link
also notably reduces the total time required for generation.

With a wired connection, we calculated round trip statistics,

finding a median exchange time of 54.4 ms, excluding client

processing time before the next exchange.

C. Deployment Results

In our deployment of the JARVIS framework, we evaluated

the performance and resilience of our distributed LLM system

using various configurations, as shown in Fig. 8. The tests

aimed to analyze the impact of different node types, network

links, and layer distributions on processing time and system

resilience. Each configuration generated 100 tokens per infer-

ence, roughly equivalent to a third of a standard A4 page of

single-spaced text.

The network transmission type of the UE significantly

affected generation time. Moving the UE from a wired to

a wireless node increased generation time by approximately

377 seconds. We also assessed the effect of layer skipping

on generation time, as discussed in Section III-E. Re-routing

traffic to the next node saved 225 seconds in generation time,

highlighting the overhead introduced by wireless links.

Additionally, we experimented with assigning multiple lay-

ers to a single node to reduce the number of devices required.

While this approach optimized resource use, it compromised

resilience to single-point failures by increasing dependency

on fewer nodes. Interestingly, as we were using only wired

connections it did not result in significant time savings, as

shown in the upper bars of Fig. 8.

V. CONCLUSION

In this paper we present JARVIS, a novel framework for

deploying large language models (LLMs) by distributing them

across multiple network nodes and leveraging trusted edge

devices with limited computational resources. This approach

enhances resilience to node failures through layer skipping,

demonstrated using the Gemma LLM on the NSF Colosseum

RF emulator. It also enables further recovery methods, such

as peer-level communication and layer redundancy. JARVIS

allows efficient local execution of LLMs without relying

on centralized cloud resources, ensuring robust operation in

tactical environments.
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